Lecture Notes in Physics Jeff Greensite An Introduction to the Confi nement Problem Second Edition Lecture Notes in Physics Volume 972 FoundingEditors WolfBeiglböck,Heidelberg,Germany JürgenEhlers,Potsdam,Germany KlausHepp,Zürich,Switzerland Hans-ArwedWeidenmüller,Heidelberg,Germany SeriesEditors MatthiasBartelmann,Heidelberg,Germany RobertaCitro,Salerno,Italy PeterHänggi,Augsburg,Germany MortenHjorth-Jensen,Oslo,Norway MaciejLewenstein,Barcelona,Spain AngelRubio,Hamburg,Germany ManfredSalmhofer,Heidelberg,Germany WolfgangSchleich,Ulm,Germany StefanTheisen,Potsdam,Germany JamesD.Wells,AnnArbor,MI,USA GaryP.Zank,Huntsville,AL,USA The Lecture Notes in Physics The series Lecture Notes in Physics (LNP), founded in 1969, reports new developmentsin physics research and teaching - quickly and informally,but with ahighqualityandtheexplicitaimtosummarizeandcommunicatecurrentknowl- edgeinanaccessibleway.Bookspublishedinthisseriesareconceivedasbridging materialbetweenadvancedgraduatetextbooksandtheforefrontofresearchandto servethreepurposes: (cid:129) to be a compact and modern up-to-date source of reference on a well-defined topic. (cid:129) to serve as an accessible introduction to the field to postgraduate students and nonspecialistresearchersfromrelatedareas. (cid:129) to be a source of advanced teaching material for specialized seminars, courses andschools. Bothmonographsandmulti-authorvolumeswillbeconsideredforpublication. Editedvolumesshould,however,consistofaverylimitednumberofcontributions only.ProceedingswillnotbeconsideredforLNP. Volumes published in LNP are disseminated both in print and in electronic formats, the electronic archive being available at springerlink.com. The series contentisindexed,abstractedandreferencedbymanyabstractingandinformation services, bibliographic networks, subscription agencies, library networks, and consortia. Proposalsshouldbe sent to a memberof the EditorialBoard, ordirectly to the managingeditoratSpringer: DrLisaScalone SpringerNature PhysicsEditorialDepartment Tiergartenstrasse17 69121Heidelberg,Germany [email protected] Moreinformationaboutthisseriesathttp://www.springer.com/series/5304 Jeff Greensite An Introduction to the Confinement Problem Second Edition JeffGreensite PhysicsandAstronomyDepartment SanFranciscoStateUniversity SanFrancisco,CA,USA ISSN0075-8450 ISSN1616-6361 (electronic) LectureNotesinPhysics ISBN978-3-030-51562-1 ISBN978-3-030-51563-8 (eBook) https://doi.org/10.1007/978-3-030-51563-8 ©SpringerNatureSwitzerlandAG2011,2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland To thememoryof myparents,Arthurand CarolGreensite. Preface This contribution to the Springer LectureNotesinPhysics series is intended to provide an overview of the confinement problem in non-abelian gauge theory, with a particular emphasis on the relevance of center symmetry and the lattice formulationand an introductionto the currentresearch. The book is an expanded andupdatedversionoflecturesandreviewtalksontheconfinementproblemthatI havepresentedovertheyears,particularlyattheSchladmingWinterSchoolin2005 andtheCracowSchoolofTheoreticalPhysicsin2009. ItisapleasuretothankMaartenGoltermanandŠtefanOlejníkforvolunteering toreadthefirstdraftofthismanuscriptandfortheirmanyhelpfulsuggestions. Inthissecondedition,Ihavetriedtobrieflysummarizesomepromisingdevelop- mentsinthisfieldwhichhaveoccurredinthedecadesubsequenttotheappearance of the first edition; these include new results in (1) the caloron/dyon theory of confinement;(2)theeffectivePolyakovlinepotentialfromfunctionalmethods;(3) theDyson–SchwingerapproachtoconfinementinCoulombgauge;(4)furthertests ofvacuumwavefunctionalproposals;and(5)theconformallightfront/AdSmodel ofhadronstructure.Thereareinadditiontwonewchapters:onepresentingthelatest numericalresultsrelevanttothecentervortextheoryofconfinementandtheother concernedwiththevarietiesofconfinementintheorieswithmattertransforming(as inthestandardmodel)inthefundamentalrepresentationofthegaugegroup. SanFrancisco,CA,USA JeffGreensite April2020 vii Contents 1 Introduction................................................................. 1 2 GlobalSymmetry,LocalSymmetry,andtheLattice................... 3 2.1 GlobalSymmetryandtheIsingModel.............................. 3 2.2 GaugeInvariance:TheUnbreakableSymmetry.................... 6 2.3 TheMonteCarloMethod............................................ 11 2.4 PossiblePhasesofaGaugeTheory ................................. 13 References.................................................................... 20 3 WhatIsConfinement? ..................................................... 21 3.1 ReggeTrajectories,andtheSpinningStickModel................. 22 3.2 TheFradkin-Shenker-Osterwalder-SeilerTheorem ................ 25 3.3 RemnantGaugeSymmetries......................................... 27 3.3.1 LandauGaugeandtheKugo-OjimaCriterion ............ 28 3.3.2 CoulombConfinement ..................................... 29 3.3.3 RemnantSymmetryBreaking.............................. 30 3.4 CenterSymmetry..................................................... 31 References.................................................................... 35 4 OrderParametersforConfinement...................................... 37 4.1 TheWilsonLoop..................................................... 37 4.2 ThePolyakovLoop .................................................. 40 4.3 The‘tHooftLoop.................................................... 43 4.4 TheVortexFreeEnergy.............................................. 48 4.5 Summary.............................................................. 49 References.................................................................... 50 5 PropertiesoftheConfiningForce......................................... 53 References.................................................................... 58 6 ConfinementfromCenterVorticesI ..................................... 59 6.1 TheMechanism ...................................................... 59 6.2 CenterGaugesandCenterProjection............................... 64 6.2.1 DirectMaximalCenterGauge............................. 64 6.2.2 FindingThinVortices ...................................... 66 6.2.3 IndirectMaximalCenterGauge ........................... 67 ix x Contents 6.2.4 LaplacianCenterGauge.................................... 68 6.2.5 DirectLaplacianCenterGauge............................ 69 6.3 TheNumericalEvidence............................................. 69 6.3.1 CenterDominance.......................................... 69 6.3.2 Vortex-LimitedWilsonLoops ............................. 72 6.3.3 VortexRemoval............................................. 74 6.3.4 ScalingoftheP-vortexDensity............................ 74 6.3.5 VorticesatHighTemperatures............................. 76 6.3.6 ChiralCondensatesandTopologicalCharge.............. 81 6.3.7 CenterSymmetryBreakingbyMatterFields............. 88 References.................................................................... 90 7 ConfinementfromCenterVorticesII .................................... 93 7.1 CoolingandSU(3)Considerations.................................. 93 7.2 ChiralSymmetryandTopology ..................................... 96 7.3 TheHadronMassSpectrum......................................... 99 7.4 Conclusions........................................................... 100 References.................................................................... 101 8 ConfinementfromCenterVorticesIII ................................... 103 8.1 CasimirScalingandVortexThickness.............................. 103 8.2 WhatAbout“GluonConfinement”? ................................ 108 8.3 TheRandomSurfaceModel......................................... 111 8.4 VorticesasSolitons................................................... 114 8.5 Critique ............................................................... 115 References.................................................................... 116 9 Monopoles,Calorons,andDualSuperconductivity .................... 119 9.1 MagneticMonopolesinCompactQED............................. 120 9.2 TheGeorgi-GlashowModelinD =3Dimensions................ 126 9.3 DualSuperconductivity,andtheSeiberg-WittenModel ........... 130 9.4 TheAbelianProjection............................................... 133 9.4.1 MonopolesandVortices.................................... 136 9.5 Calorons .............................................................. 139 9.6 Critique:N-alityandMultipleWindingLoops..................... 146 9.6.1 AreaLawFalloffforDouble-WindingLoop.............. 148 References.................................................................... 154 10 CoulombConfinement..................................................... 159 10.1 TheGribovHorizon.................................................. 159 10.2 CoulombPotentialontheLattice.................................... 163 10.3 F-PEigenvalueDensity,andtheCoulombSelf-Energy............ 170 10.3.1 TheRoleofCenterVortices................................ 175 10.4 Critique ............................................................... 177 References.................................................................... 177 Contents xi 11 Ghosts,Gluons,andDyson-SchwingerEquations...................... 179 11.1 Dyson-SchwingerEquationsandtheScalingSolution............. 180 11.2 NumericalResultsforGhostandGluonPropagators .............. 183 11.3 TheDecouplingSolution ............................................ 186 11.4 Dyson-SchwingerEquationsandCoulombConfinement.......... 187 11.5 EffectivePolyakovLinePotential................................... 188 References.................................................................... 190 12 Large-N,PlanarDiagrams,andtheGluon-ChainModel.............. 193 12.1 Double-LineNotationandFactorization............................ 194 12.2 TheGluonChainModel............................................. 199 12.2.1 NumericalInvestigationinCoulombGauge .............. 201 References.................................................................... 205 13 TheVacuumWavefunctional.............................................. 207 13.1 DimensionalReduction ............................................. 208 13.2 TemporalGaugeVacuumStatein2+1Dimensions................ 211 13.3 NewVariables........................................................ 219 13.4 NumericalTestsofDifferentProposalsinD =2+1 Dimensions........................................................... 224 References.................................................................... 227 14 Anti-deSitterSpaceandConfinement.................................... 229 14.1 TheMaldacenaConjecture .......................................... 233 14.2 WilsonLoopsinAdSSpace......................................... 238 14.3 AdS/QCD............................................................. 242 14.3.1 AdSEmbeddingofConformalQuantumMechanics..... 242 14.3.2 Discussion .................................................. 244 References.................................................................... 245 15 Symmetry,Confinement,andtheHiggs Phase......................................................................... 247 15.1 ColorandSeparation-of-ChargeConfinement...................... 248 15.2 TheHiggsPhaseasaSpinGlass.................................... 254 15.2.1 NumericalEvaluation ...................................... 258 15.3 TheSpinGlassandtheS -to-CTransitions ........................ 259 c References.................................................................... 265 16 ConcludingRemarks....................................................... 267 Index............................................................................... 269