CapitalAssetPricingModel Asummarizingdigression ArbitragePricingTheory Capital Asset Pricing Model and Arbitrage Pricing Theory Nico van der Wijst 1 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents CapitalAssetPricingModel Asummarizingdigression ArbitragePricingTheory 1 Capital Asset Pricing Model 2 A summarizing digression 3 Arbitrage Pricing Theory 2 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests E[r ] Ind.1 p C Ind.2 M B r f A σ p The Capital Market Line 3 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests Capital Asset Pricing Model CAPM Capital Market Line only valid for e¢ cient portfolios combinations of risk free asset and market portfolio M all risk comes from market portfolio What about ine¢ cient portfolios or individual stocks? don(cid:146)t lie on the CML, cannot be priced with it need a di⁄erent model for that What needs to be changed in the model: the market price of risk ((E(r ) r )/σ ), m f m (cid:0) or the measure of risk σ ? p 4 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests CAPM is more general model, developed by Sharpe Consider a two asset portfolio: one asset is market portfolio M, weight (1 x) (cid:0) other asset is individual stock i, weight x Note that this is an ine¢ cient portfolio Analyse what happens if we vary proportion x invested in i begin in point I, 100% in i, x=1 in point M, x=0, but asset i is included in M with its market value weight to point I(cid:146), x<0 to eliminate market value weight of i 5 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests E[r ] p C I(cid:146) M I B r f A σ p Portfolios of asset i and market portfolio M 6 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests Risk-return characteristics of this 2-asset portfolio: E(r ) = xE(r)+(1 x)E(r ) p i m (cid:0) σ = [x2σ2+(1 x)2σ2 +2x(1 x)σ ] p i (cid:0) m (cid:0) i,m q Expected return and risk of a marginal change in x are: ∂E(r ) p = E(r) E(r ) i m ∂x (cid:0) ∂σp = 1 x2σ2+(1 x)2σ2 +2x(1 x)σ (cid:0)12 ∂x 2 i (cid:0) m (cid:0) i,m h i 2xσ2 2σ2 +2xσ2 +2σ 4xσ (cid:2) i (cid:0) m m i,m(cid:0) i,m h i 7 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests First term of ∂σ /∂x is 1 , so: p 2σp ∂σ 2xσ2 2σ2 +2xσ2 +2σ 4xσ p = i (cid:0) m m i,m(cid:0) i,m ∂x 2σ p xσ2 σ2 +xσ2 +σ 2xσ = i (cid:0) m m i,m(cid:0) i,m σ p Isolating x gives: ∂σ x(σ2+σ2 2σ )+σ σ2 p = i m(cid:0) i,m i,m(cid:0) m ∂x σ p 8 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests At point M all funds are invested in M so that: x = 0 and σ = σ p m Note also that: i is already included in M with its market value weight economically x represents excess demand for i in equilibrium M excess demand is zero This simpli(cid:133)es marginal risk to: ∂σ σ σ2 σ σ2 p = i,m(cid:0) m = i,m(cid:0) m ∂x σ σ (cid:12)x=0 p m (cid:12) (cid:12) (cid:12) 9 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests So the slope of the risk-return trade-o⁄ at equilibrium point M is: ∂E(r )/∂x E(r) E(r ) p = i (cid:0) m ∂σ /∂x (σ σ2)/σ p (cid:12)x=0 i,m(cid:0) m m (cid:12) (cid:12) But at point M the slope o(cid:12)f the risk-return trade-o⁄ is also the slope of the CML, so: E(ri)(cid:0)E(rm) = E(rm)(cid:0)rf (σ σ2)/σ σ i,m(cid:0) m m m Solving for E(r) gives: i σ E(r) = r +(E(r ) r ) i,m i f m (cid:0) f σ2 m = r +(E(r ) r )β f m (cid:0) f i 10 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents
Description: