ebook img

Capital Asset Pricing Model and Arbitrage Pricing Theory PDF

78 Pages·2014·0.63 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Capital Asset Pricing Model and Arbitrage Pricing Theory

CapitalAssetPricingModel Asummarizingdigression ArbitragePricingTheory Capital Asset Pricing Model and Arbitrage Pricing Theory Nico van der Wijst 1 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents CapitalAssetPricingModel Asummarizingdigression ArbitragePricingTheory 1 Capital Asset Pricing Model 2 A summarizing digression 3 Arbitrage Pricing Theory 2 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests E[r ] Ind.1 p C Ind.2 M B r f A σ p The Capital Market Line 3 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests Capital Asset Pricing Model CAPM Capital Market Line only valid for e¢ cient portfolios combinations of risk free asset and market portfolio M all risk comes from market portfolio What about ine¢ cient portfolios or individual stocks? don(cid:146)t lie on the CML, cannot be priced with it need a di⁄erent model for that What needs to be changed in the model: the market price of risk ((E(r ) r )/σ ), m f m (cid:0) or the measure of risk σ ? p 4 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests CAPM is more general model, developed by Sharpe Consider a two asset portfolio: one asset is market portfolio M, weight (1 x) (cid:0) other asset is individual stock i, weight x Note that this is an ine¢ cient portfolio Analyse what happens if we vary proportion x invested in i begin in point I, 100% in i, x=1 in point M, x=0, but asset i is included in M with its market value weight to point I(cid:146), x<0 to eliminate market value weight of i 5 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests E[r ] p C I(cid:146) M I B r f A σ p Portfolios of asset i and market portfolio M 6 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests Risk-return characteristics of this 2-asset portfolio: E(r ) = xE(r)+(1 x)E(r ) p i m (cid:0) σ = [x2σ2+(1 x)2σ2 +2x(1 x)σ ] p i (cid:0) m (cid:0) i,m q Expected return and risk of a marginal change in x are: ∂E(r ) p = E(r) E(r ) i m ∂x (cid:0) ∂σp = 1 x2σ2+(1 x)2σ2 +2x(1 x)σ (cid:0)12 ∂x 2 i (cid:0) m (cid:0) i,m h i 2xσ2 2σ2 +2xσ2 +2σ 4xσ (cid:2) i (cid:0) m m i,m(cid:0) i,m h i 7 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests First term of ∂σ /∂x is 1 , so: p 2σp ∂σ 2xσ2 2σ2 +2xσ2 +2σ 4xσ p = i (cid:0) m m i,m(cid:0) i,m ∂x 2σ p xσ2 σ2 +xσ2 +σ 2xσ = i (cid:0) m m i,m(cid:0) i,m σ p Isolating x gives: ∂σ x(σ2+σ2 2σ )+σ σ2 p = i m(cid:0) i,m i,m(cid:0) m ∂x σ p 8 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests At point M all funds are invested in M so that: x = 0 and σ = σ p m Note also that: i is already included in M with its market value weight economically x represents excess demand for i in equilibrium M excess demand is zero This simpli(cid:133)es marginal risk to: ∂σ σ σ2 σ σ2 p = i,m(cid:0) m = i,m(cid:0) m ∂x σ σ (cid:12)x=0 p m (cid:12) (cid:12) (cid:12) 9 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents DerivationoftheCAPM CapitalAssetPricingModel InsightsfromtheCAPM Asummarizingdigression Undelyingassumptions ArbitragePricingTheory Empiricaltests So the slope of the risk-return trade-o⁄ at equilibrium point M is: ∂E(r )/∂x E(r) E(r ) p = i (cid:0) m ∂σ /∂x (σ σ2)/σ p (cid:12)x=0 i,m(cid:0) m m (cid:12) (cid:12) But at point M the slope o(cid:12)f the risk-return trade-o⁄ is also the slope of the CML, so: E(ri)(cid:0)E(rm) = E(rm)(cid:0)rf (σ σ2)/σ σ i,m(cid:0) m m m Solving for E(r) gives: i σ E(r) = r +(E(r ) r ) i,m i f m (cid:0) f σ2 m = r +(E(r ) r )β f m (cid:0) f i 10 D.vanderWijst TI(cid:216)4146Financeforscienceandtechnologystudents

Description:
Capital Asset Pricing Model and. Arbitrage Pricing Theory. Nico van der Wijst. 1. D. van der Wijst. TIØ4146 Finance for science and technology
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.