Table Of ContentZETA FUNCTIONS OF
REDUCTIVE GROUPS
AND THEIR ZEROS
10723_9789813231528_TP.indd 1 23/1/18 9:21 AM
b2530 International Strategic Relations and China’s National Security: World at the Crossroads
TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk
b2530_FM.indd 6 01-Sep-16 11:03:06 AM
ZETA FUNCTIONS OF
REDUCTIVE GROUPS
AND THEIR ZEROS
Lin Weng
Kyushu University, Japan
World Scientific
NEW JERSEY • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI • TOKYO
111111111111111111111111111111000000000000000000000000000000777777777777777777777777777777222222222222222222222222222222333333333333333333333333333333______________________________999999999999999999999999999999777777777777777777777777777777888888888888888888888888888888999999999999999999999999999999888888888888888888888888888888111111111111111111111111111111333333333333333333333333333333222222222222222222222222222222333333333333333333333333333333111111111111111111111111111111555555555555555555555555555555222222222222222222222222222222888888888888888888888888888888______________________________TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP..............................iiiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnnnnnnnnnnnnnnnnnnnnnnnnnnnndddddddddddddddddddddddddddddddddddddddddddddddddddddddddddd 222222222222222222222222222222 2222222222222233333333333333//////////////11111111111111//////////////1111111111111188888888888888 99999999999999::::::::::::::2222222222222211111111111111 AAAAAAAAAAAAAAMMMMMMMMMMMMMM
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Cataloging-in-Publication Data
Names: Weng, Lin, 1964– author.
Title: Zeta functions of reductive groups and their zeros / by Lin Weng
(Kyushu University, Japan).
Description: New Jersey : World Scientific, 2018. | Includes bibliographical
references and index.
Identifiers: LCCN 2017053916 | ISBN 9789813231528 (hardcover : alk. paper)
Subjects: LCSH: Functions, Zeta. | Linear algebraic groups.
Classification: LCC QA351 .W46 2018 | DDC 515/.56--dc23
LC record available at https://lccn.loc.gov/2017053916
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Copyright © 2018 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.
For any available supplementary material, please visit
http://www.worldscientific.com/worldscibooks/10.1142/10723#t=suppl
Printed in Singapore
LaiFun - 10723 - Zeta functions of reductive groups.indd 1 19-12-17 9:39:38 AM
November15,2017 15:15 ws-book9x6 BC:10723-ZetaFunctionsofReductiveGroupsandTheirZeros WengZeta pagev
Dedicated to my wife and
our daughter and son
v
b2530 International Strategic Relations and China’s National Security: World at the Crossroads
TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk
b2530_FM.indd 6 01-Sep-16 11:03:06 AM
January9,2018 12:12 ws-book9x6 BC:10723-ZetaFunctionsofReductiveGroupsandTheirZeros WengZeta pagevii
Introduction
AsanaivegeneralizationoftheDedekindzetafunctionofanumberfield F,
forapositiveintegern,thereisanaturalintegration
(cid:90)
Θ(Λ)vol(Λ)sdµ(Λ) (cid:60)(s)>1. (0.1)
Mtot
F,n
Here, Mtot denotes the moduli space of (O -)lattices Λ of rank n (with O the
F,n F F
integerringof F),Θ(Λ)andvol(Λ)denotethethetaseriesandtheco-volumeof
Λ,respectively.Ifitwereconvergentwhenn≥2,(0.1)wouldbeviewedasarank
nnon-abelianzetafunctionofF,sincethisintegrationrecoverstheDedekindzeta
functionofF ifn=1,andtheranknlatticesareassociatedtothegroupGL ,for
n
whichonlyGL iscommutative. Obviously,usingtheMellintransform,(0.1)can
1
berewrittenas
(cid:90) ∞(cid:90) dT
Θ(Λ)vol(Λ)sdµ(Λ)
T
0 Mtot[T]
F,n
(cid:90) (cid:32)(cid:90) ∞ dT(cid:33)
= Θ(T21n ·Λ)Ts dµ(Λ) (0.2)
T
Mtot[1] 0
F,n
(cid:90)
= E(cid:98)(Λ,s)dµ(Λ),
Mtot[1]
F,n
where, for T > 0, Mtot[T] denotes the moduli space of rank n lattices of co-
F,n
volumesT > 0, and E(cid:98)(Λ,s)denotesthe(complete)EpsteinzetafunctionsofΛ.
SinceEpsteinzetafunctionsarespecialkindsofEisensteinseriesandhenceare
well-knowntobeofslowgrowth,andMtot[T]arenotcompact,e.g. inthecase
F,n
F = Q,Mtot[1]isisomorphictoSL (Z)\SL (R)/SO ,alltheintegrationsabove
F,n n n n
(overmodulispaces)diverge.
Thefirsttaskofthisbookistoremedytheaboveconstructionstoobtaincon-
vergentintegrations. MotivatedbyMumford’sstabilityinalgebraicgeometry, it
isonlynaturaltotruncatethemodulispacesMtot[T]usingthestabilitycondition
F,n
so as to obtain the compact moduli spaces M [T] and hence also the moduli
F,n
spaceM ofsemi-stablelatticesofrankn.
F,n
vii
December21,2017 12:32 ws-book9x6 BC:10723-ZetaFunctionsofReductiveGroupsandTheirZeros WengZeta pageviii
viii Introduction
Definition0.1. Theranknnon-abelianzetafunction(cid:98)ζ (s)ofanumberfield F
F,n
isdefinedby
(cid:90)
(cid:98)ζ (s):= Θ(Λ)vol(Λ)sdµ(Λ) (cid:60)(s)>1. (0.3)
F,n
M
F,n
Theorem 0.1. Non-abelian zeta functions satisfy all basic zeta properties.
Namely,
(0) UptoaconstantfactordependingonnandthelocalandglobalunitsofF,
(cid:98)ζ (s)=(cid:98)ζ (s).
F,1 F
(1) Theintegration(0.3)definesahomomorphicfunctioninsandadmitsaunique
meromorphiccontinuation(cid:98)ζ (s)tothewholecomplexs-plane.
F,n
(2) Zetafunction(cid:98)ζ (s)satisfiesthestandardfunctionalequation
F,n
(cid:98)ζ (1−s)=(cid:98)ζ (s).
F,n F,n
(3) Zeta function(cid:98)ζ (s) has two singularities only, i.e. two simple poles at s =
F,n
0, 1,andtheresiduesadmitthefollowinggeometricinterpretations
Ress=1(cid:98)ζF,n(s)=vol(cid:0)MF,n[1](cid:1).
One of the central themes of this book is to expose algebraic, analytic and
geometric structures of these zeta functions. In particular, a weak Riemann hy-
pothesisfortheranknnon-abelianzetafunctionwillbeestablished,ensuringthat
allbutfinitelymanyzerosof(cid:98)ζQ,n(s)lieonthecentralline(cid:60)(s)=1/2whenn≥2.
Toexplainthis,asin(0.2)above,theMellintransformtransforms(0.3)into
(cid:90)
(cid:98)ζF,n(s)= E(cid:98)(Λ,s)dµ(Λ). (0.4)
MF,n[1]
Since the Epstein zeta function E(Λ,s) coincides with the Eisenstein series
ESLn/Pn−1,1(1,g;s), induced from the constant function one on the Levi subgroup
of the maximal subgroup P of SL corresponding to the ordered partition
n−1,1 n
n = (n−1)+1,theranknnon-abelianzetafunctionmaybeviewedasaspecial
geometric Eisenstein period, defined as the integration of Eisestein series over
somecompactmodulispaces.
Naturallyassociatedtozetafunctions,Eisensteinseriesplayacentralrolein
numbertheoryaswell.Fromtheirtheories,rangingfromtheclassicalSiegeltothe
modernLanglands,andthetraceformulatechniques,oftheprimitiveSelbergand
thepowerfulArthur,foranL2automorphicfunctionϕonaLevisubgroupMofa
parabolicsubgroupPofareductivegroupG,withrespecttoasufficientlyregular
December21,2017 12:32 ws-book9x6 BC:10723-ZetaFunctionsofReductiveGroupsandTheirZeros WengZeta pageix
Introduction ix
parameterT,thereisaninducedEisensteinseriesEG/P(ϕ,g;λ)onG(F)\G(A)1/K
andhenceananalyticEisensteinperiod
(cid:90)
(cid:16) (cid:17)
ΛT EG/P(ϕ,g;λ) dg. (0.5)
G(F)\G(A)1/K
HereAdenotestheadelicringof F, Kdenotesamaximalcompactsubgroupof
G(A), and ΛT denotes the Arthur’s analytic truncation. In general, it is difficult
tocalculateananalyticEisensteinperiod. However, whenϕiscuspidal, thereis
a way to evaluate, thanks to the advanced Rankin-Selberg formula obtained by
Jacquet-Lapid-Rogowski with a use of regularized integrations over cones. For
example,whenP= Bisminimalandϕistheconstantfunction1onthemaximal
torus, based on the structures of the constant terms of EG/B(1,g;λ) exposed by
Siegel in lower rank and Langlands in general, it is proved that (0.5), for suffi-
cientlyregularT,coincideswiththeperiodinthefollowing:
Definition0.2. TheT-periodofasplitreductivegroupG overanumberfield F
isdefinedby
(cid:88) e(cid:104)wλ−ρ,T(cid:105) (cid:89) (cid:98)ζ ((cid:104)λ,α(cid:105))
ωG;T(λ):= (cid:81) F . (0.6)
F w∈W α∈∆(cid:104)wλ−ρ,α(cid:105)α>0,wα<0(cid:98)ζF((cid:104)λ,α(cid:105)+1)
HereW,∆,ρ,>and<0denotetheWeylgroup,thesetofsimpleroots,theWeyl
vectorandthepositiveandnegativerootsintheinducedrootsystem,respectively.
Inaddition,byLanglands’theoryonEisensteinsystems,beinginducedfrom
a special L2-automorphic form, the Eisenstein series ESLn/Pn−1,1(1,g;s) admits in
principlearealizationasmultipleresidueofsomeEisensteinseriesinducedfrom
cusp forms over Levi subgroups of some higher co-rank parabolic subgroups.
Practically,inthisbook,asanSL -analogueofaresultofDiehl,thefollowingex-
n
plicitrealizationofthesinglevariableESLn/Pn−1,1(1,g;s)isobtainedasamultiple
residueofaseveralvariablesESLn/P1,...,1(1,g;λ),whereP1,....1denotestheminimal
parabolicsubgroupofSL associatedtothepartitionn=1+···+1.
n
Lemma 0.1. For SL , denote by (cid:8)λ (cid:9)n−1 the fundamental dominant weights.
n i i=1
(cid:88)n−1
Then,withλ= sλ +ρ∈Cn−1ands= s ,
i i n−1
i=1
(cid:16) (cid:17)
ESLn/Pn−1,1(1,g;s)=Ressn−2=1,...,s2=1,s1=1 ESLn/P1,...,1(1,g;λ) . (0.7)
As a by-product, up to a certain normalization factor Norm(s) to effectively
collectthezetafactorsinthedenominatorsofthetermsontherighthandsideof
(0.8)below,thereisthefollowing: