ebook img

Zebrafish skeleton development PDF

19 Pages·2017·18.14 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Zebrafish skeleton development

RESEARCHARTICLE Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification JeremieSilvent1*,AnatAkiva1,VladBrumfeld2,NatalieReznikov3,4,KatyaRechav2, KarinaYaniv5,LiaAddadi1,SteveWeiner1 1 DepartmentofStructuralBiology,WeizmannInstituteofScience,Rehovot,Israel,2 Departmentof ChemicalResearchSupport,WeizmannInstituteofScience,Rehovot,Israel,3 DepartmentofMaterials, a1111111111 InstituteofBiomedicalEngineering,ImperialCollegeLondon,London,UnitedKingdom,4 Departmentof a1111111111 Bioengineering,InstituteofBiomedicalEngineering,ImperialCollegeLondon,London,UnitedKingdom, a1111111111 5 DepartmentofBiologicalRegulation,WeizmannInstituteofScience,Rehovot,Israel a1111111111 a1111111111 *[email protected] Abstract OPENACCESS Althoughboneisoneofthemoststudiedlivingmaterials,manyquestionsaboutthemanner Citation:SilventJ,AkivaA,BrumfeldV,Reznikov inwhichbonesformremainunresolved,includingfinedetailsoftheskeletalstructureduring N,RechavK,YanivK,etal.(2017)Zebrafish development.Inthisstudy,wemonitoredskeletondevelopmentofzebrafishlarvae,using skeletondevelopment:Highresolutionmicro-CT calceinfluorescence,high-resolutionmicro-CT3DimagesandFIB-SEMintheblocksur- andFIB-SEMblocksurfaceserialimagingfor phenotypeidentification.PLoSONE12(12): faceserialimagingmode.Wecomparedcalceinstainingoftheskeletonsofthewildtype e0177731.https://doi.org/10.1371/journal. andnacremutants,whicharetransparentzebrafish,withmicro-CTforthefirst30dayspost pone.0177731 fertilizationembryos,andidentifiedsignificantdifferences.Wequantifiedthebonevolumes Editor:DominiqueHeymann,UniversitedeNantes, andmineralcontentsofbones,includingotoliths,duringdevelopment,andshowedthat FRANCE suchdevelopmentaldifferences,includingotolithdevelopment,couldbehelpfulinidentify- Received:September15,2016 ingphenotypes.Inaddition,high-resolutionimagingrevealedthepresenceofmineralized Accepted:May2,2017 aggregatesinthenotochord,beforetheformationofthefirstboneintheaxialskeleton. Thesestructuresmightplayaroleinthestorageofthemineral.Ourresultshighlightthe Published:December8,2017 potentialofthesehigh-resolution3Dapproachestocharacterizethezebrafishskeleton, Copyright:©2017Silventetal.Thisisanopen whichinturncouldproveinvaluableinformationforbetterunderstandingthedevelopment accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which andthecharacterizationofskeletalphenotypes. permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files.Inaddition,allmoviesandtheirlegendsare Introduction availableonhttps://figshare.com/s/ Thezebrafish,aspeciesbelongingtotheCyprinidaefamily,isawell-studiedvertebratedevel- 3a0a5945f0d3afda6aed. opmentalmodelbecauseofitsbasalphylogeneticlocation,becauseofthehighdegreeof Funding:Thisresearchwassupportedbythe homologybetweenhumanandzebrafishgenes[1]andorgansystems[2]andalsobecauseof ISRAELSCIENCEFOUNDATION(grantnumber 875/15).J.S.issupportedbyaClore-Krenter-Katz theopticalclarityofitsembryosandlarvae,allowinginvivoobservationsduringdevelopment postdoctoralfellowship.Thefundershadnorolein [3–5].Inaddition,theabilitytomanipulatetheembryoenablestheuseofdifferentgenetic PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 1/19 Zebrafishdevelopment:Micro-CT studydesign,datacollectionandanalysis,decision techniques,suchasreverse-geneticapproachesthatallowthefunctionalstudyofamissing topublish,orpreparationofthemanuscript. gene,ortheuseoftransgenicapproachesthatenablethecreationofzebrafishexpressingfluo- Competinginterests:Theauthorshavedeclared rescentproteins[6].Clearlytheinsightsgainedfromgeneticmanipulationsaredirectlyrelated thatnocompetinginterestsexist. toourabilitytoidentifyandcharacterizetheresultingphenotype. Skeletondevelopmentisgenerallydocumentedbyusinghistologicalstains,suchascalcein green,calceinblue,alcianblueoralizarinred[7–15].Thesestainsbindcalciumandcalcium containingmineral,albeitnotexclusively[16–18].Radiographyhasalsobeenusedtoobtain 2Dprojectionsofonlythemineralizedregions[19,20].Micro-CThasbeenusedformonitor- ingadultskeletonsatrelativelylowresolution[21],andsynchrotronbasedmicro-CThasbeen usedforhighresolutionstudiesoftheteeth(0.6microns)[22,23].Hereweshowthatalabora- torybasedmicro-CTcanprovide3Dhighresolutionimages,aswellasvolumeandmineral densityquantification.Themicro-CTdataaresubtlydifferentfromthecalceinfluorescence data,andtheircomparisonprovidesinvaluableinformationforassessingskeletalphenotypes inlarvalzebrafish.Togofurtherinthecharacterizationoftheskeleton,theserialfocusedion beam/scanningelectronmicroscopy(FIB-SEM)wasalsousedto3Dvisualizeandquantifythe bone,asthelacuno-canalicularnetwork[24],thetendon-boneinsertion[25]orthecollagen network[26–30].witharesolutioninthenanometricscale. Wereportseveralpreviouslyunidentifiedaspectsofthezebrafishskeleton.Moreover,we illustratetheeffectivityofthisapproach,bycomparingwildtypetoalbinomutants,asthelat- terarewidelyusedindevelopmentalstudiesontheassumptionthatintermsofskeletaldevel- opment,theyaresimilar,ifnotidenticaltothewildtype. Wefirstdocumentwildtypeskeletaldevelopmentusing,first,awidelyusedfluorescence dye;calcein,andcomparetheseimagestohigh-resolutionmicro-CT3Dimagestovalidatethe useofhighresolution(around0.6micron)micro-CTforcharacterizinglarvalskeletalpheno- types.Calceinisknowntochelatecalciumionsbothinsolutionandinthemineralbulk[10]. Therefore,calceinfluorescencedoesnotonlydetectmineralinthebonesasisoftenassumed [10],butalsocalciumionconcentrationsatotherlocations.Forexample,theintestinaltract alsofluorescesstrongly[10],presumablybecausetheintestinaltractcontainshighconcentra- tionsofcalciumduetothefood.Micro-CTfaithfullymapsthedistributionsofthedensemin- eralphasesofthebones,theteethandthecalciumcarbonatemineraloftheotoliths,and thereforemonitorsmineralizationperseinthedevelopmentoftheskeleton.Tocharacterize furtheraspectsofthedevelopmentofthebones,wealsousedthedualbeamFIB-SEMinthe “sliceandview”(orserialsurfaceviewSSV)mode,aspreviouslydescribed[26].Thishigh-res- olutionapproachallowedustoobservenewfeaturesinthetailandthenotochord. Materialsandmethods Breedingandcollectingofzebrafish Zebrafishwerebredandmaintainedinacontrolledenvironmentat28˚Caspreviously described[4].Thenacremutantischaracterizedbytheabsenceofmelanocytesduetoamuta- tioninthemiftagene[31].Alltheexperimentswerecarriedoutaccordingtotheguidelines andapprovedbytheWeizmannInstituteAnimalCareandUseCommittee.Embryoswere obtainedbyplacing5–6femalesand5–6malesinaspawningtank.Eggswerecollectedand embryoswereraisedinwaterat28±0.5˚Cinanincubatorfor6days,atwhichtimetheywere transferredtoanormalwatertankandmaintaineduntilanalysis. Calceinstaining Thelarvaewereimmersedina0.2%calceinsolution(Sigma-Aldrich)(pH6.8)for25minand thenwashedthreetimeswithbluewater.Forinvivoobservations,animalswereanesthetized PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 2/19 Zebrafishdevelopment:Micro-CT with0.12%tricaine-metanesulfonate(MS222)inbluewater.Aftermountinginmethylcellu- lose5%(1.5%)plate,thelarvaewereobservedusinganepifluorescencestereomicroscope (LeicaM167FC).PicturesweretakenusingLeicaApplicationSuiteimagingsoftwareversion 3.7(Leica,Wetzlar,Germany). ConfocalimagingwasperformedonaZeissLSM780uprightconfocalmicroscope(Carl Zeiss,Jena,Germany)withaW-PlanApochromat×20objective,NA1.0.Thecalceinstaining wasexcitedat488nmandtheemissionwascollectedat492/577nm.Z-stackswereacquired at1.5μmincrements,every1min.Pictureswereprocessedoff-lineusingImageJ(NIH)and Avizo(FEI). 4zebrafishlarvaewereobservedforeachconditionandtime. Micro-CTscan Weimaged3freshlysacrificedzebrafishusinganon-destructivevolumevisualizationforeach conditionandat17dpfand30dpf.Thismethodenablesthevisualizationofsofttissueswith- outneedforchemicalfixationorstaining[32].ThefishwereeuthanizedwithMS222.We coatedthesurfaceofaplasticsheet3x1x0.2cminsizewithadropofpolylysine(Sigma- Aldrich)toallowtheinteractionbetweenthepolyanionicsurfacesofthefishandthepolyca- tioniclayerofadsorbedpolylysine.Thesamplewasplacedinacustom-madesampleholder thatallowedmaintenanceofhighhumidityaroundthesampleandwasobservedusinganXra- diaMicro-CT-400(ZeissX-RayMicroscopy,Pleasanton,CA,USA),withanX-raysourceof 30kV,current150μAandmagnification10X.Thepixelsizeforthe17dpfspecimenandfor thetailwas0.6x0.6x0.6micronsandforthe30dpfspecimenwas1.3x1.3x1.3microns.1,200 projectionimageswererecordedwith20secexposuretime.Inordertocomparealltheinten- sitiesofalltheacquisitions,ascalewasdesignedusingastandardphantom.Inaddition,a hydroxyapatiteCTphantom(QRM,Mo¨hrendorf,Germany)wasusedasacalibrationstan- dardforthequantificationofthedensityofzebrafishbones.Obtaineddataaregivenas mean±standarddeviation. FIB-SEMblocksurfaceserialimaging WeusedthedualbeamFIB-SEM(FEI)intheblocksurfaceserialimagingmodetostudythe mineralizedanddemineralizedfinstructures.Threesamplesweredemineralizedinasolution of2%PFA,3%EDTAandcacodylatebufferat0.1Movernightonarotatingtable.Thepre- servedanddemineralizedsampleswerehigh-pressurefrozen(HPM10;Bal-Tec)indextran (10%),thenfreeze-substituted(AFS2LeicaMicrosystems,Vienna,Austria)in2%glutaralde- hydeinabsoluteethanol.Sampleswerestoredat-90˚Cfor42h,beforethetemperaturewas slowlyincreasedto-30˚Cfor24h(-2˚C/h)tofinallyreach0˚Cin20min(60˚C/h).Thesam- pleswerestainedbasedontheOTOTOprotocol[26],usingosmiumat1%inethanolfor30 minandthiocarbohydrazideat0.5%inethanolfor15minbothatroomtemperature.The sampleswerethenembeddedinEpon.Afterpolymerization,thesamplesurfaceswereexposed usinganUltracutReichertmicrotome(LeicaMicrosystems,Vienna,Austria)withadiamond knife(DiATOMEAG,Biel,Switzerland).SSVviewsweremadeusingtheHeliosNanolab600 dualbeammicroscope(FEI,TheNetherlands)onsamplessputter-coatedwithgold.The focusedionbeam(FIB)removesslicesintheXY-planewhereastheSEM,usingamixedsec- ondaryelectrons/backscatteredelectrons(SE/BSE)detector,scanstheexposedsurfacefrom theside.Asequenceofserialimagesisrecordedtoformaz-stackinthedirectionperpendicu- lartothebonecross-section.Theobservationsonthemineralizedsampleswerecarriedout withaslicethicknessof26nmcovering12μmindepth,overanareaof26x22μm.Isometric PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 3/19 Zebrafishdevelopment:Micro-CT voxelsizesweremaintainedduringallexperiments.Asequenceofserialimageswasrecorded toformaz-stack. Cryo-SEM Threetailsweredissectedfromfreshlysacrificedzebrafishandimmediatelyimmersedin10% dextran(Fluka).Beforebeinghigh-pressurefrozenbyaHPM10(Bal-Tec),thesampleswere wedgedbetweentwometaldiscs(3mmdiameter,0.05mmcavitieswithaflatcoverabove). Thefrozensampleswerethenplacedonaholderinliquidnitrogenenvironmentforfreeze fracture(BAF60;Bal-Tec).Thesampleswerelongitudinallyfracturedat-120˚C,usingavac- uumbetterthan5x10−7mbar.FracturedsampleswereobservedusinganUltra55SEM (Zeiss,Germany)withasecondaryelectronin-lensdetectorandabackscatteredelectronin- lensdetectoroperatingat1kV,witha10μmaperturesizeofanda1.8mmworkingdistance. Theobservationsweremadeinthefrozen-hydratedstateat-120˚C. Imageanalysis ImagesobtainedwiththeCT-scanandtheFIBSEMwereanalyzedusingImageJ(NIH,USA) andAvizo8(FEIVizualizationSciencesGroup)softwares.Toanalyzethebonedevelopment inthezebrafishobservedbymicro-CT-scan,weusedvariouscommandsinAvizo.Forthe LabelFieldcommand,weselectedforeachsamplethebonesineachsliceandalignedthem oneupontheotherobtaininga3-dimensionalstack.ThentheLabelAnalysiscommandcalcu- latedthevolumeforeachselectedsample,andtheHistogramcommandprovidedtheintensi- tiesforeachbone.Afterdatacalibrationwithcalibrationphantomsforhydroxyapatiteand aragonite,weconvertedintensitiesofeveryvoxelintheimagestomineraldensities. ToanalyzetheFIBSEMimages,wefirstremovedtheeffectofchargingusingtheFFTsignal ofeachimagebelongingtothestacks.Thenthecontrastlevelsofalltheimageswereadjusted usingthepluginEnhanceLocalContrast[33].Thestackswerethenmanuallyalignedusing theAlignSlicescommandinAvizo.Allthedensematerialsweresurface-renderedusingthe SurfaceViewcommand. Thedirectionalityanalysesweresearchedtocharacterizethecollagenstructureofthefin anddeterminetwoparameters:thedirectionandthedispersion[26,27].Briefly,thefirst parameterprovidestheazimuthaldirectionangleofthemajorityofthecollagenfibrils, whereasthesecondparametershowstheangulardispersion,i.e.thestandarddeviationofthis firstparameter.Theanalysiswasobtainedaspreviouslydescribed[26],withsub-stacksof30 imagesandthemethodofLocalGradientOrientationintheDirectionalityplugin[34].Allthe imagespresentedinthisarticleinsideviewsareinthesameorientation,namelywiththetail totheleftandtheheadtotheright. Statisticalanalysis Foreachanalysisandcondition,atleast3zebrafishlarvaewereused.Dataaregivenas mean±standarddeviation. Results Developmentoftheskeletonbasedonhighresolutionmicro-CT Fordirectcomparisonweexaminedthesamecalceinstainedspecimensinthemicro-CTthat wereimagedusingthefluorescencemicroscope.Wefocusedthecomparisononlyonthehead andthefirstprecaudalvertebraeat17dpfwhentheheadandaxialskeletonarefullydeveloped basedoncalceinimaging,andcomparedtheseresultsto30dpf(Fig1).At17dpfthemicro- PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 4/19 Zebrafishdevelopment:Micro-CT Fig1.Micro-CT-scanand3D-reconstructions(a,c,e,g)andfluorescencemicroscopyaftercalceinstaining imaging(b,d,f,h)ofsideviewsofcalcifiedskeletalstructuresinwildtype(a,b,c,d)andnacre(e,f,g,h)zebrafish larvaeat17dpf(a,b,e,f)and30dpf(c,d,g,h).NovertebraisobservedusingtheCTscanobservationatD17(asterisk). https://doi.org/10.1371/journal.pone.0177731.g001 CT-scanofwildtypelarvaeshowssomeelementsofthecranium,includingthecleithrum,the basioccipitalprocess,theexoccipital,theceratobranchial5includingtheteethandthe3pairs ofotoliths(Tohavemoreinformationonthezebrafishanatomy,seeS1Fig).Thefirst8verte- braecentrawiththeirneuralspinesandthefirstribsonthefifthvertebraarevisible,aswellas someelementsfromtheWeberianapparatus.Thefluorescencesignalshowsthepresenceof thesamebones,butnottheotolithsandtheteeth.At30dpf,weobserveallthebonesinthe cranium,thevertebraewiththeirneuralspinesandthefirst5ribs.At30dpftheWeberian apparatusiscompletelyformedwith,forexample,thetripusandtheossuspensorium,theoto- lithsareclearlyseen,asaretheteeth(Fig1,S1Video).Withthefluorescencemicroscope,the PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 5/19 Zebrafishdevelopment:Micro-CT Table1. VolumeofthebonesdeterminedbyCTinthewildtypeat17dpfand30dpfinμm3. 17dpf 30dpf 17dpf 30dpf Asteriscus 80,000±37,000 560,000±6,000 Orbitosphenoid 14,000±5,000 30,000±3,000 Lapillus 270,000±3,000 830,000±45,000 Ceratobranchial5 280,000±56,000 2,680,000±1,000 Sagitta 340,000±36,000 1,700,000±810,000 Cleithrum 220,000±114,000 1,250,000±4,000 Entopterygoid 140,000±25,000 470,000±8,000 Exoccipital 90,000±5,000 690,000±134,000 Quadrate 60,000±7,000 460,000±45,000 Basioccipitalprocess 280,000±1,000 1,070,000±4,000 Ceratohyalbone 20,000±5,000 250,000±1,000 Vertebra1 30,000±1,000 190,000±4,000 Metapterygoid 20,000±5,000 70,000±9,000 Vertebra2 60,000±1,000 160,000±2,000 Pterosphenoid 95,000±18,000 650,000±117,000 Vertebra3 70,000±5,000 330,000±1,000 Parasphenoid 160,000±3,000 490,000±2,000 Vertebra4 70,000±1,000 210,000±6,000 Branchiostegalray1 10,000±4,000 110,000±21,000 Vertebra5 60,000±5,000 200,000±4,000 Branchiostegalray2 25,000±1,000 100,000±11,000 Vertebra6 60,000±2,000 220,000±2,000 Branchiostegalray3 41,000±2,000 110,000±23,000 Vertebra7 50,000±4,000 210,000±4,000 https://doi.org/10.1371/journal.pone.0177731.t001 completeaxialskeletonat30dpfisobserved,buttheelementsinthecraniumaredifficultto see.Forexample,thetripusandtheossuspensoriumthatareclearlydetectedbymicro-CT, arenotvisiblebyfluorescence(Tohavemoreinformationonthedevelopmentoftheskeleton, seeS2Fig). Themicro-CTcanprovidequantitativemeasurementsofbonevolumeandmineralden- sity.Suchquantitativemeasurementscouldprovehelpfulforphenotypeidentification.Table1 showstheincreaseinbonevolumefrom17dpfto30dpfinthewildtype.Inthisperiodof time,wildtypebonesincreaseinvolumefrom3to10times.The3otolithtypesincreasein volumefrom3to7times.Thecomparisonofthemineraldensityvaluesforcranialbonesand vertebraefromthe17and30dpflarvaerespectively(Fig2A)andfortheotoliths(Fig2B) showsthatthetrendsduringdevelopmentarenotalwaysthesame,duetothecomplexrela- tionsbetweenrateofvolumeincreaseandrateofmineralizationwithintheformingbone. Indeed,weobservedforexamplethatthebasioccipitalprocessat17dpfwasmoremineralized inthewildtypethanat30dpf. Thevertebraeinthewildtypeat30dpfarealwaysmoremineralizedthanat17dpf,except forthefirstvertebra.Remarkably,at17dpf,vertebra1isthemostmineralized(930mgHaP/ cm3),comparedtovertebra2(870mgHaP/cm3);vertebrae4,5and3havesimilardensities ((cid:25)850mgHaP/cm3)andtheothervertebraehavelowerdensities((cid:20)800mgHaP/cm3). Theseresultsshowthat,evenifthemineralizationoftheaxialskeletonbeginswiththeforma- tionofvertebrae3and4[35],thefirsttwocentraaremoremineralized.At30dpf,vertebrae 1–4allhavethesamemineraldensity,namelymorethan910mgHaP/cm3.Thecomparison oftherelativemineraldensityfortheotolithsshowsthatthereisnodifferencefrom17dpfto 30dpfforthesagittaortheasteriscus,whereasthelapillusismoredenseat30dpf. Inthestudiesusingtransparentlines,evenifthequestionwaspreviouslyaskedtoknowif thelackofpigmentsaffectsthebiologicalprocesses[36],thetransparencywasnotconsidered todisturbthewildtypephenotypeofthezebrafish. Weusedourcomplementarymicro-CT–fluorescenceapproachtoalsostudythenacrezeb- rafish,asitiswidelyusedfordiversestudiesbecauseofitscompletelackofmelanocyte.Our aimwastodetermineifthemutationthatcausedthetransparencymayalsohaveaffectedskel- etaldevelopment[31].At17dpfnovertebraeareobservedintheaxialskeletonofnacrefish usingmicro-CT(Fig1).Thisisinsharpcontrasttothevertebraethatareclearlyseenwithcal- ceinfluorescence.Presumablythecalceinhighlightsfreeorboundioniccalcium,butnotmin- eral.Thesame“extra”fluorescenceisobservedintheribs,wherebasedonthemicro-CTno PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 6/19 Zebrafishdevelopment:Micro-CT Fig2.Quantificationbymicro-CTofelementsfoundinthewildtypeandnacrezebrafish.A.Absolutemineraldensityquantificationofsome elementsfoundinthecraniumandthefirst7vertebraeat17dpf(blueandgreen)and30dpf(redandpurple).Allthebonesareexpressedinquantity ofhydroxyapatitepercm3.B.RelativemineraldensityquantificationbyCTofotolithsat17dpf(blueandgreen)and30dpf(redandpurple).Allthe bonesareexpressedinpercentageofaragonitecomparedtoapurestandard.Errorbars=standarddeviation. https://doi.org/10.1371/journal.pone.0177731.g002 mineralcouldbeidentified.At30dpf,nodifferencesbetweenwildtypeandnacrewere observedusingthemicro-CT(S4Video).Thefluorescenceimagesclearlyshowthevertebrae andtheribs,butthehighlyfluorescingouterbonesofthecraniumpreventimagingofthe internalbones.Inconclusionthisdirectcomparisonshowsmajordifferencesbetweenthe skeletalcomponentsthataremineralizedasrevealedbythemicro-CTandthecalceinfluores- cencelabellingofthesamespecimens.Thelatterinsomecasesshowsfluorescencewhere maturemineralizedextracellularmatrixisabsent. Whenthevolumesofskullbonesarequantifiedat17and30dpf(Table2),theincreasein volumeofthenacreismuchlargerthaninthewildtype,namelythevolumeincreasesfrom3 PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 7/19 Zebrafishdevelopment:Micro-CT Table2. Volumeofthebonesdeterminedbymicro-CTin17and30dpfnacrefish(μm3). 17dpf 30dpf 17dpf 30dpf Asteriscus 700±200 390,000±42,000 Orbitosphenoid Absent 20,000±4,000 Lapillus 120,000±60,000 780,000±1,000 Ceratobranchial5 70,000±22,000 1,070,000±5,000 Sagitta 150,000±72,000 970,000±49,000 Cleithrum 60,000±5,000 1,090,000±1,000 Entopterygoid 42,000±10,000 430,000±172,000 Exoccipital 20,000±1,000 600,000±60,000 Quadrate 20,000±2,000 150,000±4,000 Basioccipitalprocess 30,000±1,000 1,820,000±2,000 Ceratohyalbone 20,000±6,000 90,000±28,000 Vertebra1 Absent 300,000±1,000 Metapterygoid Absent 80,000±3,000 Vertebra2 Absent 230,000±1,000 Pterosphenoid Absent 120,000±63,000 Vertebra3 Absent 260,000±2,000 Parasphenoid 60,000±1,000 1,130,000±3,000 Vertebra4 Absent 230,000±3,000 Branchiostegalray1 Absent 90,000±9,000 Vertebra5 Absent 220,000±6,000 Branchiostegalray2 Absent 140,000±45,000 Vertebra6 Absent 220,000±4,000 Branchiostegalray3 Absent 200,000±2,000 Vertebra7 Absent 380,000±4,000 https://doi.org/10.1371/journal.pone.0177731.t002 to58timesforthebonesalreadyformed.Inaddition,twoofthe3nacreotolithpairsincrease involumearound6times,whereastheasteriscusincreasesmorethan586times.Thisdiffer- enceisascribedtothefactthattheformationoftheasteriscusislateindevelopment(11–12 dpf)[37]relativetotheotherotoliths(19–22hpf)[38].By30dpfbothwildtypeandnacrefish aresimilarinsizeandskeletaldevelopmentbasedonfluorescence.Themineraldensities(Fig 2c)arealsosimilarat30dpfwithinexperimentalerror,with4interestingexceptions,namely theceratohyalbone,thequadrate,theparasphenoidandthepterosphenoid.Inthefirstthree cases,themineraldensityofthenacreismuchlowerthanthewildtype,whereasthelastoneis higher.Significantly,allthesebonesarefoundinthesameproximalpartofthecranium. Comparisonoftherelativemineraldensityfortheotolithsshowsthattheotolithsofnacre zebrafisharelessmineralizedorasmineralizedasthewildtype,exceptforthesagittaat17dpf (Fig2d). Fluorescencemicroscopyrevealsapreviouslyunknowncalcium-richdepositinnacre mutants(Fig3aand3b).Thisfluorescencewasobservedinthedistalpartofthebodyinthe sameareaasthelargevacuolatednotochordcells(thenucleuspulposus)(Fig3b),andispres- entpriortotheformationofthefirstaxialskeletalelement.Usingconfocalmicroscopy,we observedthatthisfluorescencewaslocalizedinsidethecellsofthe14dpfzebrafish.Micro-CT showsthatthesefluorescentstructureshavedensitiessimilartothoseofbonemineral.These structureswerealsoobservedincryo-SEM(Fig3dand3e)underconditionsthatminimizethe introductionofartifacts.Incryo-SEMtheyappearaslargeaggregates(±2μm)closetothe notochordsheet,whichhaveapositivebackscatteredelectron(BSE)signal,implyingthatthey arecomposedofdensematerial. Newlyidentifiedmineralizedfeaturesinthetailfinbone Themicro-CTrevealedunknownhighlydensestructuresbetweenthetailfinbonesthatcan- notbeobservedbyconventionalinvivoconfocalimaging(Fig4aand4b).Theseelongated denseobjectsarelocatedclosetothelepidotrichiaandarealignedwiththeventralfinbone hemi-cylinder.WeusedFIB-SEMintheblocksurfaceserialmodetodeterminetherelatedcel- lularcontentin3Dat10nmresolution.Thesefeaturescannotbeseeninmicro-CT(Fig4d,4e and4f)(S2Video).Previouslyencounteredproblemsofelectronmicroscopyimagingofan untreatednon-demineralizedsamplebyFIBSEMaretheabsenceofcontrastinthebiological tissue[26,27]andthepossibledissolutionofthemineralduringprocessingforspecimen embedding.Weusedanapproachinvolvingfixation,high-pressurefreezing,freeze- PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 8/19 Zebrafishdevelopment:Micro-CT Fig3.Tailareashowingtheunknowndepositrevealedbycalceinstainingusingconfocalmicroscopy,micro-CTandcryo-SEM,observed innacrezebrafishat14dpf.(a,b)Distalregionofthebodyobservedintopviewusingconfocalmicroscopyrevealsapositivestaininglocalizedinthe nucleuspulposuscells(whitedottedline).(c)Inlateralviewusingmicro-CT,weshowthatthispositivestainingisduetodensematerial.d,e.InLens secondaryelectronimagesusingcryo-SEMinalongitudinalfractureofthenotochordshowingaggregatesclosetothenotochordsheets (arrowheads).Thecollagenisfoundinclosevicinity(whiteasterisks).e.Areamagnifiedisdelimitedbytherectangleinpaneld.Inset:Back-scattering electronimaging(BSE)ofthesameareaobservedine. https://doi.org/10.1371/journal.pone.0177731.g003 substitution,heavymetalstaining,andpolymerization[39],whichpreservedthemineral whilesupportingstaining.Themineralizedtailincludingtheupperandlowerlepidotrichia, i.e.thedermalbonyhemi-segments,appearwhiteduetothehigh-densitycarbonated hydroxyapatitemineraldeposits.Theactinotrichia,i.e.thelargecollagenousfibers/bundles, werealsoobservedbetweenthehemi-cylinders.Theactinotrichiaappeargrey.Pigmentlayers areobservedclosetothebones.ThepigmentlayersarebrightintheBSEmodeduetothepres- enceofzincandthemetalstaining[40].Weobservedunknownelongatedstructuresinthe micro-CT.Theyarelocatedclosetothelepidotrichiaandbetweentwoactinotrichia,witha granularappearance.Heretootheyhavecontrastintensitiessimilartothebones.Thelocaliza- tionofthisunidentifiedstructureisnotthesamebetweentheCt-scanandtheFIB-SEM,but wehypothesizedthatthiscanbeduetoadifferenceofthelocationoftheregionofinterestin thetail.Butthisunidentifiedstructureisalwaysinthevicinityofthebones. WealsousedFIB-SEMtocharacterizethecollagenfibrilsofthewildtypedemineralized lepidotrichiaintermsofpreferredorientation(direction)andtheextentofpreferredorienta- tion(dispersion)[26,27](Fig5)(S3Video).Intheupperpartofamoredeveloppedlepidotri- chia,closetotheoutersurface(Fig5a),thedirectionalityvaluesplottedagainsttheslice number(Fig5c)highlight4differentzones.Zone1,whichisthemostdorsalpart,hasthelow- estdispersion(73.34˚±5.73˚)andthehighestdirectionvalues(94.40˚±2.32˚),characteristic ofananistropicoralignedstructure.Zone2hasthehighestdispersion(84.17˚±16.48˚)with theweakestdirectionvalues(80.05˚±8.21˚),implyingadisorderedstructure.Zone3ismore ordered,withthehighestvariationinthedirectionofthefibrils(84.29˚±9.56˚).Finallyzone 4,whichisthemostventralregion,hasastructureclosertozone1,intermsofdispersion (80.49˚±10.23˚)anddirection(89.42˚±6.79˚)values.Thepreferredorientationofthecolla- genfiberscorrespondstothelongitudinalaxisofthelepidotrichia. PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 9/19 Zebrafishdevelopment:Micro-CT Fig4.NewfeaturesinthetailfinboneobservedbymicroCT-scanandFIB-SEM.a.Confocal fluorescencemicroscopyobservationsofthetailstainedbyacalceinsolution.b)volumerenderingandc) cross-sectionofthevolumerenderingusingCT-scanofthetailfinat30dpf,ataresolutionof2.5μm,shows unknownhighdensitystructures(arrowheads).d,eandfareFIB-SEMscanand3Dreconstructions, respectively,oftheformingregionofamineralizedtailincrosssection(dande)andreconstructed longitudinalsection(f)ataresolutionof20nm.Theunidentifiedhighdensitystructures(arrowheads)are closetothelepidotrichia(bone)andbetweentwoactinotrichia(collagenbundles)(whiteasterisksind). https://doi.org/10.1371/journal.pone.0177731.g004 Discussion Weshowherethathighresolution3Dimagingusingconfocalmicroscopy,quantitativeFIB- SEMintheblocksurfaceserialimagingmodeandquantitativehighresolutionlaboratory basedmicro-CTofthezebrafishskeletonarepowerfulmethodsforrevealingdetailsofskeletal development,includingtheotoliths.Highresolutionmicro-CTinparticular,evenwithalabo- ratorymicro-CT,couldwellprovetobeavaluabletoolforskeletalphenotypeidentificationin boththeimagingandquantitativemodes. PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 10/19

Description:
Zebrafish development: Micro-CT. PLOS ONE | https://doi.org/10.1371/journal.pone.0177731 December 8, 2017. 2 / 19 study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing interests: The authors have declared that no competing interests exist.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.