RESEARCHARTICLE Zebrafish skeleton development: High resolution micro-CT and FIB-SEM block surface serial imaging for phenotype identification JeremieSilvent1*,AnatAkiva1,VladBrumfeld2,NatalieReznikov3,4,KatyaRechav2, KarinaYaniv5,LiaAddadi1,SteveWeiner1 1 DepartmentofStructuralBiology,WeizmannInstituteofScience,Rehovot,Israel,2 Departmentof ChemicalResearchSupport,WeizmannInstituteofScience,Rehovot,Israel,3 DepartmentofMaterials, a1111111111 InstituteofBiomedicalEngineering,ImperialCollegeLondon,London,UnitedKingdom,4 Departmentof a1111111111 Bioengineering,InstituteofBiomedicalEngineering,ImperialCollegeLondon,London,UnitedKingdom, a1111111111 5 DepartmentofBiologicalRegulation,WeizmannInstituteofScience,Rehovot,Israel a1111111111 a1111111111 *[email protected] Abstract OPENACCESS Althoughboneisoneofthemoststudiedlivingmaterials,manyquestionsaboutthemanner Citation:SilventJ,AkivaA,BrumfeldV,Reznikov inwhichbonesformremainunresolved,includingfinedetailsoftheskeletalstructureduring N,RechavK,YanivK,etal.(2017)Zebrafish development.Inthisstudy,wemonitoredskeletondevelopmentofzebrafishlarvae,using skeletondevelopment:Highresolutionmicro-CT calceinfluorescence,high-resolutionmicro-CT3DimagesandFIB-SEMintheblocksur- andFIB-SEMblocksurfaceserialimagingfor phenotypeidentification.PLoSONE12(12): faceserialimagingmode.Wecomparedcalceinstainingoftheskeletonsofthewildtype e0177731.https://doi.org/10.1371/journal. andnacremutants,whicharetransparentzebrafish,withmicro-CTforthefirst30dayspost pone.0177731 fertilizationembryos,andidentifiedsignificantdifferences.Wequantifiedthebonevolumes Editor:DominiqueHeymann,UniversitedeNantes, andmineralcontentsofbones,includingotoliths,duringdevelopment,andshowedthat FRANCE suchdevelopmentaldifferences,includingotolithdevelopment,couldbehelpfulinidentify- Received:September15,2016 ingphenotypes.Inaddition,high-resolutionimagingrevealedthepresenceofmineralized Accepted:May2,2017 aggregatesinthenotochord,beforetheformationofthefirstboneintheaxialskeleton. Thesestructuresmightplayaroleinthestorageofthemineral.Ourresultshighlightthe Published:December8,2017 potentialofthesehigh-resolution3Dapproachestocharacterizethezebrafishskeleton, Copyright:©2017Silventetal.Thisisanopen whichinturncouldproveinvaluableinformationforbetterunderstandingthedevelopment accessarticledistributedunderthetermsofthe CreativeCommonsAttributionLicense,which andthecharacterizationofskeletalphenotypes. permitsunrestricteduse,distribution,and reproductioninanymedium,providedtheoriginal authorandsourcearecredited. DataAvailabilityStatement:Allrelevantdataare withinthepaperanditsSupportingInformation files.Inaddition,allmoviesandtheirlegendsare Introduction availableonhttps://figshare.com/s/ Thezebrafish,aspeciesbelongingtotheCyprinidaefamily,isawell-studiedvertebratedevel- 3a0a5945f0d3afda6aed. opmentalmodelbecauseofitsbasalphylogeneticlocation,becauseofthehighdegreeof Funding:Thisresearchwassupportedbythe homologybetweenhumanandzebrafishgenes[1]andorgansystems[2]andalsobecauseof ISRAELSCIENCEFOUNDATION(grantnumber 875/15).J.S.issupportedbyaClore-Krenter-Katz theopticalclarityofitsembryosandlarvae,allowinginvivoobservationsduringdevelopment postdoctoralfellowship.Thefundershadnorolein [3–5].Inaddition,theabilitytomanipulatetheembryoenablestheuseofdifferentgenetic PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 1/19 Zebrafishdevelopment:Micro-CT studydesign,datacollectionandanalysis,decision techniques,suchasreverse-geneticapproachesthatallowthefunctionalstudyofamissing topublish,orpreparationofthemanuscript. gene,ortheuseoftransgenicapproachesthatenablethecreationofzebrafishexpressingfluo- Competinginterests:Theauthorshavedeclared rescentproteins[6].Clearlytheinsightsgainedfromgeneticmanipulationsaredirectlyrelated thatnocompetinginterestsexist. toourabilitytoidentifyandcharacterizetheresultingphenotype. Skeletondevelopmentisgenerallydocumentedbyusinghistologicalstains,suchascalcein green,calceinblue,alcianblueoralizarinred[7–15].Thesestainsbindcalciumandcalcium containingmineral,albeitnotexclusively[16–18].Radiographyhasalsobeenusedtoobtain 2Dprojectionsofonlythemineralizedregions[19,20].Micro-CThasbeenusedformonitor- ingadultskeletonsatrelativelylowresolution[21],andsynchrotronbasedmicro-CThasbeen usedforhighresolutionstudiesoftheteeth(0.6microns)[22,23].Hereweshowthatalabora- torybasedmicro-CTcanprovide3Dhighresolutionimages,aswellasvolumeandmineral densityquantification.Themicro-CTdataaresubtlydifferentfromthecalceinfluorescence data,andtheircomparisonprovidesinvaluableinformationforassessingskeletalphenotypes inlarvalzebrafish.Togofurtherinthecharacterizationoftheskeleton,theserialfocusedion beam/scanningelectronmicroscopy(FIB-SEM)wasalsousedto3Dvisualizeandquantifythe bone,asthelacuno-canalicularnetwork[24],thetendon-boneinsertion[25]orthecollagen network[26–30].witharesolutioninthenanometricscale. Wereportseveralpreviouslyunidentifiedaspectsofthezebrafishskeleton.Moreover,we illustratetheeffectivityofthisapproach,bycomparingwildtypetoalbinomutants,asthelat- terarewidelyusedindevelopmentalstudiesontheassumptionthatintermsofskeletaldevel- opment,theyaresimilar,ifnotidenticaltothewildtype. Wefirstdocumentwildtypeskeletaldevelopmentusing,first,awidelyusedfluorescence dye;calcein,andcomparetheseimagestohigh-resolutionmicro-CT3Dimagestovalidatethe useofhighresolution(around0.6micron)micro-CTforcharacterizinglarvalskeletalpheno- types.Calceinisknowntochelatecalciumionsbothinsolutionandinthemineralbulk[10]. Therefore,calceinfluorescencedoesnotonlydetectmineralinthebonesasisoftenassumed [10],butalsocalciumionconcentrationsatotherlocations.Forexample,theintestinaltract alsofluorescesstrongly[10],presumablybecausetheintestinaltractcontainshighconcentra- tionsofcalciumduetothefood.Micro-CTfaithfullymapsthedistributionsofthedensemin- eralphasesofthebones,theteethandthecalciumcarbonatemineraloftheotoliths,and thereforemonitorsmineralizationperseinthedevelopmentoftheskeleton.Tocharacterize furtheraspectsofthedevelopmentofthebones,wealsousedthedualbeamFIB-SEMinthe “sliceandview”(orserialsurfaceviewSSV)mode,aspreviouslydescribed[26].Thishigh-res- olutionapproachallowedustoobservenewfeaturesinthetailandthenotochord. Materialsandmethods Breedingandcollectingofzebrafish Zebrafishwerebredandmaintainedinacontrolledenvironmentat28˚Caspreviously described[4].Thenacremutantischaracterizedbytheabsenceofmelanocytesduetoamuta- tioninthemiftagene[31].Alltheexperimentswerecarriedoutaccordingtotheguidelines andapprovedbytheWeizmannInstituteAnimalCareandUseCommittee.Embryoswere obtainedbyplacing5–6femalesand5–6malesinaspawningtank.Eggswerecollectedand embryoswereraisedinwaterat28±0.5˚Cinanincubatorfor6days,atwhichtimetheywere transferredtoanormalwatertankandmaintaineduntilanalysis. Calceinstaining Thelarvaewereimmersedina0.2%calceinsolution(Sigma-Aldrich)(pH6.8)for25minand thenwashedthreetimeswithbluewater.Forinvivoobservations,animalswereanesthetized PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 2/19 Zebrafishdevelopment:Micro-CT with0.12%tricaine-metanesulfonate(MS222)inbluewater.Aftermountinginmethylcellu- lose5%(1.5%)plate,thelarvaewereobservedusinganepifluorescencestereomicroscope (LeicaM167FC).PicturesweretakenusingLeicaApplicationSuiteimagingsoftwareversion 3.7(Leica,Wetzlar,Germany). ConfocalimagingwasperformedonaZeissLSM780uprightconfocalmicroscope(Carl Zeiss,Jena,Germany)withaW-PlanApochromat×20objective,NA1.0.Thecalceinstaining wasexcitedat488nmandtheemissionwascollectedat492/577nm.Z-stackswereacquired at1.5μmincrements,every1min.Pictureswereprocessedoff-lineusingImageJ(NIH)and Avizo(FEI). 4zebrafishlarvaewereobservedforeachconditionandtime. Micro-CTscan Weimaged3freshlysacrificedzebrafishusinganon-destructivevolumevisualizationforeach conditionandat17dpfand30dpf.Thismethodenablesthevisualizationofsofttissueswith- outneedforchemicalfixationorstaining[32].ThefishwereeuthanizedwithMS222.We coatedthesurfaceofaplasticsheet3x1x0.2cminsizewithadropofpolylysine(Sigma- Aldrich)toallowtheinteractionbetweenthepolyanionicsurfacesofthefishandthepolyca- tioniclayerofadsorbedpolylysine.Thesamplewasplacedinacustom-madesampleholder thatallowedmaintenanceofhighhumidityaroundthesampleandwasobservedusinganXra- diaMicro-CT-400(ZeissX-RayMicroscopy,Pleasanton,CA,USA),withanX-raysourceof 30kV,current150μAandmagnification10X.Thepixelsizeforthe17dpfspecimenandfor thetailwas0.6x0.6x0.6micronsandforthe30dpfspecimenwas1.3x1.3x1.3microns.1,200 projectionimageswererecordedwith20secexposuretime.Inordertocomparealltheinten- sitiesofalltheacquisitions,ascalewasdesignedusingastandardphantom.Inaddition,a hydroxyapatiteCTphantom(QRM,Mo¨hrendorf,Germany)wasusedasacalibrationstan- dardforthequantificationofthedensityofzebrafishbones.Obtaineddataaregivenas mean±standarddeviation. FIB-SEMblocksurfaceserialimaging WeusedthedualbeamFIB-SEM(FEI)intheblocksurfaceserialimagingmodetostudythe mineralizedanddemineralizedfinstructures.Threesamplesweredemineralizedinasolution of2%PFA,3%EDTAandcacodylatebufferat0.1Movernightonarotatingtable.Thepre- servedanddemineralizedsampleswerehigh-pressurefrozen(HPM10;Bal-Tec)indextran (10%),thenfreeze-substituted(AFS2LeicaMicrosystems,Vienna,Austria)in2%glutaralde- hydeinabsoluteethanol.Sampleswerestoredat-90˚Cfor42h,beforethetemperaturewas slowlyincreasedto-30˚Cfor24h(-2˚C/h)tofinallyreach0˚Cin20min(60˚C/h).Thesam- pleswerestainedbasedontheOTOTOprotocol[26],usingosmiumat1%inethanolfor30 minandthiocarbohydrazideat0.5%inethanolfor15minbothatroomtemperature.The sampleswerethenembeddedinEpon.Afterpolymerization,thesamplesurfaceswereexposed usinganUltracutReichertmicrotome(LeicaMicrosystems,Vienna,Austria)withadiamond knife(DiATOMEAG,Biel,Switzerland).SSVviewsweremadeusingtheHeliosNanolab600 dualbeammicroscope(FEI,TheNetherlands)onsamplessputter-coatedwithgold.The focusedionbeam(FIB)removesslicesintheXY-planewhereastheSEM,usingamixedsec- ondaryelectrons/backscatteredelectrons(SE/BSE)detector,scanstheexposedsurfacefrom theside.Asequenceofserialimagesisrecordedtoformaz-stackinthedirectionperpendicu- lartothebonecross-section.Theobservationsonthemineralizedsampleswerecarriedout withaslicethicknessof26nmcovering12μmindepth,overanareaof26x22μm.Isometric PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 3/19 Zebrafishdevelopment:Micro-CT voxelsizesweremaintainedduringallexperiments.Asequenceofserialimageswasrecorded toformaz-stack. Cryo-SEM Threetailsweredissectedfromfreshlysacrificedzebrafishandimmediatelyimmersedin10% dextran(Fluka).Beforebeinghigh-pressurefrozenbyaHPM10(Bal-Tec),thesampleswere wedgedbetweentwometaldiscs(3mmdiameter,0.05mmcavitieswithaflatcoverabove). Thefrozensampleswerethenplacedonaholderinliquidnitrogenenvironmentforfreeze fracture(BAF60;Bal-Tec).Thesampleswerelongitudinallyfracturedat-120˚C,usingavac- uumbetterthan5x10−7mbar.FracturedsampleswereobservedusinganUltra55SEM (Zeiss,Germany)withasecondaryelectronin-lensdetectorandabackscatteredelectronin- lensdetectoroperatingat1kV,witha10μmaperturesizeofanda1.8mmworkingdistance. Theobservationsweremadeinthefrozen-hydratedstateat-120˚C. Imageanalysis ImagesobtainedwiththeCT-scanandtheFIBSEMwereanalyzedusingImageJ(NIH,USA) andAvizo8(FEIVizualizationSciencesGroup)softwares.Toanalyzethebonedevelopment inthezebrafishobservedbymicro-CT-scan,weusedvariouscommandsinAvizo.Forthe LabelFieldcommand,weselectedforeachsamplethebonesineachsliceandalignedthem oneupontheotherobtaininga3-dimensionalstack.ThentheLabelAnalysiscommandcalcu- latedthevolumeforeachselectedsample,andtheHistogramcommandprovidedtheintensi- tiesforeachbone.Afterdatacalibrationwithcalibrationphantomsforhydroxyapatiteand aragonite,weconvertedintensitiesofeveryvoxelintheimagestomineraldensities. ToanalyzetheFIBSEMimages,wefirstremovedtheeffectofchargingusingtheFFTsignal ofeachimagebelongingtothestacks.Thenthecontrastlevelsofalltheimageswereadjusted usingthepluginEnhanceLocalContrast[33].Thestackswerethenmanuallyalignedusing theAlignSlicescommandinAvizo.Allthedensematerialsweresurface-renderedusingthe SurfaceViewcommand. Thedirectionalityanalysesweresearchedtocharacterizethecollagenstructureofthefin anddeterminetwoparameters:thedirectionandthedispersion[26,27].Briefly,thefirst parameterprovidestheazimuthaldirectionangleofthemajorityofthecollagenfibrils, whereasthesecondparametershowstheangulardispersion,i.e.thestandarddeviationofthis firstparameter.Theanalysiswasobtainedaspreviouslydescribed[26],withsub-stacksof30 imagesandthemethodofLocalGradientOrientationintheDirectionalityplugin[34].Allthe imagespresentedinthisarticleinsideviewsareinthesameorientation,namelywiththetail totheleftandtheheadtotheright. Statisticalanalysis Foreachanalysisandcondition,atleast3zebrafishlarvaewereused.Dataaregivenas mean±standarddeviation. Results Developmentoftheskeletonbasedonhighresolutionmicro-CT Fordirectcomparisonweexaminedthesamecalceinstainedspecimensinthemicro-CTthat wereimagedusingthefluorescencemicroscope.Wefocusedthecomparisononlyonthehead andthefirstprecaudalvertebraeat17dpfwhentheheadandaxialskeletonarefullydeveloped basedoncalceinimaging,andcomparedtheseresultsto30dpf(Fig1).At17dpfthemicro- PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 4/19 Zebrafishdevelopment:Micro-CT Fig1.Micro-CT-scanand3D-reconstructions(a,c,e,g)andfluorescencemicroscopyaftercalceinstaining imaging(b,d,f,h)ofsideviewsofcalcifiedskeletalstructuresinwildtype(a,b,c,d)andnacre(e,f,g,h)zebrafish larvaeat17dpf(a,b,e,f)and30dpf(c,d,g,h).NovertebraisobservedusingtheCTscanobservationatD17(asterisk). https://doi.org/10.1371/journal.pone.0177731.g001 CT-scanofwildtypelarvaeshowssomeelementsofthecranium,includingthecleithrum,the basioccipitalprocess,theexoccipital,theceratobranchial5includingtheteethandthe3pairs ofotoliths(Tohavemoreinformationonthezebrafishanatomy,seeS1Fig).Thefirst8verte- braecentrawiththeirneuralspinesandthefirstribsonthefifthvertebraarevisible,aswellas someelementsfromtheWeberianapparatus.Thefluorescencesignalshowsthepresenceof thesamebones,butnottheotolithsandtheteeth.At30dpf,weobserveallthebonesinthe cranium,thevertebraewiththeirneuralspinesandthefirst5ribs.At30dpftheWeberian apparatusiscompletelyformedwith,forexample,thetripusandtheossuspensorium,theoto- lithsareclearlyseen,asaretheteeth(Fig1,S1Video).Withthefluorescencemicroscope,the PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 5/19 Zebrafishdevelopment:Micro-CT Table1. VolumeofthebonesdeterminedbyCTinthewildtypeat17dpfand30dpfinμm3. 17dpf 30dpf 17dpf 30dpf Asteriscus 80,000±37,000 560,000±6,000 Orbitosphenoid 14,000±5,000 30,000±3,000 Lapillus 270,000±3,000 830,000±45,000 Ceratobranchial5 280,000±56,000 2,680,000±1,000 Sagitta 340,000±36,000 1,700,000±810,000 Cleithrum 220,000±114,000 1,250,000±4,000 Entopterygoid 140,000±25,000 470,000±8,000 Exoccipital 90,000±5,000 690,000±134,000 Quadrate 60,000±7,000 460,000±45,000 Basioccipitalprocess 280,000±1,000 1,070,000±4,000 Ceratohyalbone 20,000±5,000 250,000±1,000 Vertebra1 30,000±1,000 190,000±4,000 Metapterygoid 20,000±5,000 70,000±9,000 Vertebra2 60,000±1,000 160,000±2,000 Pterosphenoid 95,000±18,000 650,000±117,000 Vertebra3 70,000±5,000 330,000±1,000 Parasphenoid 160,000±3,000 490,000±2,000 Vertebra4 70,000±1,000 210,000±6,000 Branchiostegalray1 10,000±4,000 110,000±21,000 Vertebra5 60,000±5,000 200,000±4,000 Branchiostegalray2 25,000±1,000 100,000±11,000 Vertebra6 60,000±2,000 220,000±2,000 Branchiostegalray3 41,000±2,000 110,000±23,000 Vertebra7 50,000±4,000 210,000±4,000 https://doi.org/10.1371/journal.pone.0177731.t001 completeaxialskeletonat30dpfisobserved,buttheelementsinthecraniumaredifficultto see.Forexample,thetripusandtheossuspensoriumthatareclearlydetectedbymicro-CT, arenotvisiblebyfluorescence(Tohavemoreinformationonthedevelopmentoftheskeleton, seeS2Fig). Themicro-CTcanprovidequantitativemeasurementsofbonevolumeandmineralden- sity.Suchquantitativemeasurementscouldprovehelpfulforphenotypeidentification.Table1 showstheincreaseinbonevolumefrom17dpfto30dpfinthewildtype.Inthisperiodof time,wildtypebonesincreaseinvolumefrom3to10times.The3otolithtypesincreasein volumefrom3to7times.Thecomparisonofthemineraldensityvaluesforcranialbonesand vertebraefromthe17and30dpflarvaerespectively(Fig2A)andfortheotoliths(Fig2B) showsthatthetrendsduringdevelopmentarenotalwaysthesame,duetothecomplexrela- tionsbetweenrateofvolumeincreaseandrateofmineralizationwithintheformingbone. Indeed,weobservedforexamplethatthebasioccipitalprocessat17dpfwasmoremineralized inthewildtypethanat30dpf. Thevertebraeinthewildtypeat30dpfarealwaysmoremineralizedthanat17dpf,except forthefirstvertebra.Remarkably,at17dpf,vertebra1isthemostmineralized(930mgHaP/ cm3),comparedtovertebra2(870mgHaP/cm3);vertebrae4,5and3havesimilardensities ((cid:25)850mgHaP/cm3)andtheothervertebraehavelowerdensities((cid:20)800mgHaP/cm3). Theseresultsshowthat,evenifthemineralizationoftheaxialskeletonbeginswiththeforma- tionofvertebrae3and4[35],thefirsttwocentraaremoremineralized.At30dpf,vertebrae 1–4allhavethesamemineraldensity,namelymorethan910mgHaP/cm3.Thecomparison oftherelativemineraldensityfortheotolithsshowsthatthereisnodifferencefrom17dpfto 30dpfforthesagittaortheasteriscus,whereasthelapillusismoredenseat30dpf. Inthestudiesusingtransparentlines,evenifthequestionwaspreviouslyaskedtoknowif thelackofpigmentsaffectsthebiologicalprocesses[36],thetransparencywasnotconsidered todisturbthewildtypephenotypeofthezebrafish. Weusedourcomplementarymicro-CT–fluorescenceapproachtoalsostudythenacrezeb- rafish,asitiswidelyusedfordiversestudiesbecauseofitscompletelackofmelanocyte.Our aimwastodetermineifthemutationthatcausedthetransparencymayalsohaveaffectedskel- etaldevelopment[31].At17dpfnovertebraeareobservedintheaxialskeletonofnacrefish usingmicro-CT(Fig1).Thisisinsharpcontrasttothevertebraethatareclearlyseenwithcal- ceinfluorescence.Presumablythecalceinhighlightsfreeorboundioniccalcium,butnotmin- eral.Thesame“extra”fluorescenceisobservedintheribs,wherebasedonthemicro-CTno PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 6/19 Zebrafishdevelopment:Micro-CT Fig2.Quantificationbymicro-CTofelementsfoundinthewildtypeandnacrezebrafish.A.Absolutemineraldensityquantificationofsome elementsfoundinthecraniumandthefirst7vertebraeat17dpf(blueandgreen)and30dpf(redandpurple).Allthebonesareexpressedinquantity ofhydroxyapatitepercm3.B.RelativemineraldensityquantificationbyCTofotolithsat17dpf(blueandgreen)and30dpf(redandpurple).Allthe bonesareexpressedinpercentageofaragonitecomparedtoapurestandard.Errorbars=standarddeviation. https://doi.org/10.1371/journal.pone.0177731.g002 mineralcouldbeidentified.At30dpf,nodifferencesbetweenwildtypeandnacrewere observedusingthemicro-CT(S4Video).Thefluorescenceimagesclearlyshowthevertebrae andtheribs,butthehighlyfluorescingouterbonesofthecraniumpreventimagingofthe internalbones.Inconclusionthisdirectcomparisonshowsmajordifferencesbetweenthe skeletalcomponentsthataremineralizedasrevealedbythemicro-CTandthecalceinfluores- cencelabellingofthesamespecimens.Thelatterinsomecasesshowsfluorescencewhere maturemineralizedextracellularmatrixisabsent. Whenthevolumesofskullbonesarequantifiedat17and30dpf(Table2),theincreasein volumeofthenacreismuchlargerthaninthewildtype,namelythevolumeincreasesfrom3 PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 7/19 Zebrafishdevelopment:Micro-CT Table2. Volumeofthebonesdeterminedbymicro-CTin17and30dpfnacrefish(μm3). 17dpf 30dpf 17dpf 30dpf Asteriscus 700±200 390,000±42,000 Orbitosphenoid Absent 20,000±4,000 Lapillus 120,000±60,000 780,000±1,000 Ceratobranchial5 70,000±22,000 1,070,000±5,000 Sagitta 150,000±72,000 970,000±49,000 Cleithrum 60,000±5,000 1,090,000±1,000 Entopterygoid 42,000±10,000 430,000±172,000 Exoccipital 20,000±1,000 600,000±60,000 Quadrate 20,000±2,000 150,000±4,000 Basioccipitalprocess 30,000±1,000 1,820,000±2,000 Ceratohyalbone 20,000±6,000 90,000±28,000 Vertebra1 Absent 300,000±1,000 Metapterygoid Absent 80,000±3,000 Vertebra2 Absent 230,000±1,000 Pterosphenoid Absent 120,000±63,000 Vertebra3 Absent 260,000±2,000 Parasphenoid 60,000±1,000 1,130,000±3,000 Vertebra4 Absent 230,000±3,000 Branchiostegalray1 Absent 90,000±9,000 Vertebra5 Absent 220,000±6,000 Branchiostegalray2 Absent 140,000±45,000 Vertebra6 Absent 220,000±4,000 Branchiostegalray3 Absent 200,000±2,000 Vertebra7 Absent 380,000±4,000 https://doi.org/10.1371/journal.pone.0177731.t002 to58timesforthebonesalreadyformed.Inaddition,twoofthe3nacreotolithpairsincrease involumearound6times,whereastheasteriscusincreasesmorethan586times.Thisdiffer- enceisascribedtothefactthattheformationoftheasteriscusislateindevelopment(11–12 dpf)[37]relativetotheotherotoliths(19–22hpf)[38].By30dpfbothwildtypeandnacrefish aresimilarinsizeandskeletaldevelopmentbasedonfluorescence.Themineraldensities(Fig 2c)arealsosimilarat30dpfwithinexperimentalerror,with4interestingexceptions,namely theceratohyalbone,thequadrate,theparasphenoidandthepterosphenoid.Inthefirstthree cases,themineraldensityofthenacreismuchlowerthanthewildtype,whereasthelastoneis higher.Significantly,allthesebonesarefoundinthesameproximalpartofthecranium. Comparisonoftherelativemineraldensityfortheotolithsshowsthattheotolithsofnacre zebrafisharelessmineralizedorasmineralizedasthewildtype,exceptforthesagittaat17dpf (Fig2d). Fluorescencemicroscopyrevealsapreviouslyunknowncalcium-richdepositinnacre mutants(Fig3aand3b).Thisfluorescencewasobservedinthedistalpartofthebodyinthe sameareaasthelargevacuolatednotochordcells(thenucleuspulposus)(Fig3b),andispres- entpriortotheformationofthefirstaxialskeletalelement.Usingconfocalmicroscopy,we observedthatthisfluorescencewaslocalizedinsidethecellsofthe14dpfzebrafish.Micro-CT showsthatthesefluorescentstructureshavedensitiessimilartothoseofbonemineral.These structureswerealsoobservedincryo-SEM(Fig3dand3e)underconditionsthatminimizethe introductionofartifacts.Incryo-SEMtheyappearaslargeaggregates(±2μm)closetothe notochordsheet,whichhaveapositivebackscatteredelectron(BSE)signal,implyingthatthey arecomposedofdensematerial. Newlyidentifiedmineralizedfeaturesinthetailfinbone Themicro-CTrevealedunknownhighlydensestructuresbetweenthetailfinbonesthatcan- notbeobservedbyconventionalinvivoconfocalimaging(Fig4aand4b).Theseelongated denseobjectsarelocatedclosetothelepidotrichiaandarealignedwiththeventralfinbone hemi-cylinder.WeusedFIB-SEMintheblocksurfaceserialmodetodeterminetherelatedcel- lularcontentin3Dat10nmresolution.Thesefeaturescannotbeseeninmicro-CT(Fig4d,4e and4f)(S2Video).Previouslyencounteredproblemsofelectronmicroscopyimagingofan untreatednon-demineralizedsamplebyFIBSEMaretheabsenceofcontrastinthebiological tissue[26,27]andthepossibledissolutionofthemineralduringprocessingforspecimen embedding.Weusedanapproachinvolvingfixation,high-pressurefreezing,freeze- PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 8/19 Zebrafishdevelopment:Micro-CT Fig3.Tailareashowingtheunknowndepositrevealedbycalceinstainingusingconfocalmicroscopy,micro-CTandcryo-SEM,observed innacrezebrafishat14dpf.(a,b)Distalregionofthebodyobservedintopviewusingconfocalmicroscopyrevealsapositivestaininglocalizedinthe nucleuspulposuscells(whitedottedline).(c)Inlateralviewusingmicro-CT,weshowthatthispositivestainingisduetodensematerial.d,e.InLens secondaryelectronimagesusingcryo-SEMinalongitudinalfractureofthenotochordshowingaggregatesclosetothenotochordsheets (arrowheads).Thecollagenisfoundinclosevicinity(whiteasterisks).e.Areamagnifiedisdelimitedbytherectangleinpaneld.Inset:Back-scattering electronimaging(BSE)ofthesameareaobservedine. https://doi.org/10.1371/journal.pone.0177731.g003 substitution,heavymetalstaining,andpolymerization[39],whichpreservedthemineral whilesupportingstaining.Themineralizedtailincludingtheupperandlowerlepidotrichia, i.e.thedermalbonyhemi-segments,appearwhiteduetothehigh-densitycarbonated hydroxyapatitemineraldeposits.Theactinotrichia,i.e.thelargecollagenousfibers/bundles, werealsoobservedbetweenthehemi-cylinders.Theactinotrichiaappeargrey.Pigmentlayers areobservedclosetothebones.ThepigmentlayersarebrightintheBSEmodeduetothepres- enceofzincandthemetalstaining[40].Weobservedunknownelongatedstructuresinthe micro-CT.Theyarelocatedclosetothelepidotrichiaandbetweentwoactinotrichia,witha granularappearance.Heretootheyhavecontrastintensitiessimilartothebones.Thelocaliza- tionofthisunidentifiedstructureisnotthesamebetweentheCt-scanandtheFIB-SEM,but wehypothesizedthatthiscanbeduetoadifferenceofthelocationoftheregionofinterestin thetail.Butthisunidentifiedstructureisalwaysinthevicinityofthebones. WealsousedFIB-SEMtocharacterizethecollagenfibrilsofthewildtypedemineralized lepidotrichiaintermsofpreferredorientation(direction)andtheextentofpreferredorienta- tion(dispersion)[26,27](Fig5)(S3Video).Intheupperpartofamoredeveloppedlepidotri- chia,closetotheoutersurface(Fig5a),thedirectionalityvaluesplottedagainsttheslice number(Fig5c)highlight4differentzones.Zone1,whichisthemostdorsalpart,hasthelow- estdispersion(73.34˚±5.73˚)andthehighestdirectionvalues(94.40˚±2.32˚),characteristic ofananistropicoralignedstructure.Zone2hasthehighestdispersion(84.17˚±16.48˚)with theweakestdirectionvalues(80.05˚±8.21˚),implyingadisorderedstructure.Zone3ismore ordered,withthehighestvariationinthedirectionofthefibrils(84.29˚±9.56˚).Finallyzone 4,whichisthemostventralregion,hasastructureclosertozone1,intermsofdispersion (80.49˚±10.23˚)anddirection(89.42˚±6.79˚)values.Thepreferredorientationofthecolla- genfiberscorrespondstothelongitudinalaxisofthelepidotrichia. PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 9/19 Zebrafishdevelopment:Micro-CT Fig4.NewfeaturesinthetailfinboneobservedbymicroCT-scanandFIB-SEM.a.Confocal fluorescencemicroscopyobservationsofthetailstainedbyacalceinsolution.b)volumerenderingandc) cross-sectionofthevolumerenderingusingCT-scanofthetailfinat30dpf,ataresolutionof2.5μm,shows unknownhighdensitystructures(arrowheads).d,eandfareFIB-SEMscanand3Dreconstructions, respectively,oftheformingregionofamineralizedtailincrosssection(dande)andreconstructed longitudinalsection(f)ataresolutionof20nm.Theunidentifiedhighdensitystructures(arrowheads)are closetothelepidotrichia(bone)andbetweentwoactinotrichia(collagenbundles)(whiteasterisksind). https://doi.org/10.1371/journal.pone.0177731.g004 Discussion Weshowherethathighresolution3Dimagingusingconfocalmicroscopy,quantitativeFIB- SEMintheblocksurfaceserialimagingmodeandquantitativehighresolutionlaboratory basedmicro-CTofthezebrafishskeletonarepowerfulmethodsforrevealingdetailsofskeletal development,includingtheotoliths.Highresolutionmicro-CTinparticular,evenwithalabo- ratorymicro-CT,couldwellprovetobeavaluabletoolforskeletalphenotypeidentificationin boththeimagingandquantitativemodes. PLOSONE|https://doi.org/10.1371/journal.pone.0177731 December8,2017 10/19
Description: