Mon.Not.R.Astron.Soc.351,1439–1456(2004) doi:10.1111/j.1365-2966.2004.07889.x XMM–Newton observations of the binary cluster system Abell 399/401 (cid:2) Irini Sakelliou and Trevor J. Ponman SchoolofPhysicsandAstronomy,UniversityofBirmingham,Edgbaston,BirminghamB152TT Accepted2004March29.Received2004March22;inoriginalform2003December9 ABSTRACT D o Both Abell 399 and Abell 401 are rich clusters of galaxies, with global temperatures of 7.2 w n (Abell399)and8.5keV(Abell401),respectively.Theylieataprojectedseparationof∼3Mpc, loa d forming a close pair. We have observed the system with the XMM–Newton satellite. The ed data of each cluster show significant departures from our idealized picture of relaxed rich fro m clusters. Neither of the two contains a cooling flow, and we find that their central regions h arenearlyisothermal,withsomesmall-scaleinhomogeneities.Theimageanalysisderivesβ ttp s valuesthataresmallerthanthecanonicalvalueof0.65,andthesurfacebrightnessdistribution ://a c is not symmetric around the central dominant galaxies: there are irregularities in the central ad e ∼200kpc,andasymmetriesonlargerscales,inthattheintraclustergasineachclusterismore m ic extended towards the other member of the system. Both clusters host extended radio haloes .o u p and a plethora of tailed radio galaxies. The halo in Abell 399 appears to be correlated with .c o a sharp edge apparent in the XMM–Newton images, and a region of harder X-ray emission. m /m ThereisalsoevidenceforenhancedX-rayfluxintheregionbetweenthetwoclusters,where n thetemperatureishigherthanourexpectations. ras /a Althoughtidalorcompressioneffectsmightaffectthelarge-scalestructureofthetwoclus- rtic ters,weshowthatthesecannotaccountforthedistortionsseenintheinnerregions.Weargue le -a thatthereasonablyrelaxedmorphologyoftheclusters,andtheabsenceofmajortemperature b s anomalies,arguesagainstmodelsinwhichthetwohavealreadyexperiencedacloseencounter. tra c Thepropertiesoftheintermediateregionsuggeststhattheyareatanearlystageofmerging, t/3 5 1 and are currently interacting mildly, because their separation is still too large for more dra- /4 maticeffects.Thesubstructurewefindintheirinnerregionsseemstopointtotheirindividual /14 3 merging histories. It seems likely that in the Abell 399/401 system, we are witnessing two 9 /1 mergerremnants,justbeforetheymergetogethertoformasinglerichclusterofgalaxies.This 13 5 pictureisconsistentwithrecentnumericalsimulationsofclusterformation. 46 5 b Key words: galaxies: clusters: individual: Abell 399 – galaxies: clusters: individual: y g Abell401–intergalacticmedium–X-rays:galaxies:clusters. ue s t o n 0 3 A p 1 INTRODUCTION leanrrmichedmiaen(tISoMft)hbeehICinMdi(net.hge.Aclcursetmer,acnoenttrailb.u2ti0n0g3i)n.tChoisowlinagytflootwhes ril 20 1 Itisnowcommonwisdomthatclustersofgalaxiesareformedhi- maybedisplacedordestroyedentirely(e.g.Go´mezetal.2002). 9 erarchically, by the merging of smaller mass units, preferentially Numerical simulations (Schindler & Mu¨ller 1993; Roettiger, alonglarge-scalefilaments.Duringsuchviolenteventsoneexpects Burns & Loken 1996; Ricker 1998; Takizawa 1999; Ritchie & physical processes to take place that have significant impact on Thomas 2002; Burns et al. 2004) have advanced to such an ex- the properties of the constituents of clusters (i.e. gas, galaxies), tent that they can provide us with detailed temperature maps and thatwoulddefinetheirsubsequentevolution,aswellastheenergy syntheticX-rayimagesofclustersunderformation,ateachstageof andentropybudgetinthelargeststructuresintheUniverse.Dur- theirevolution.Allthisworkhasdemonstratedthatclustermerg- ingmergers,shockwavespropagatewithintheintraclustermedium ersresultindramaticsubstructure,visibleintheX-rayimagesand (ICM),thusincreasingitsthermalenergyandentropy.Thecluster spectra of clusters of galaxies. Initially, during the first approach galaxiesmaybeseverelystripped,leavingtheirmetalrichinterstel- oftwoclustersacompressionand/orshockwaveisdevelopedin theinterfacebetweenthem.Whenthetwocorescollide,thetem- peratureandluminosityofthesystemreachesitsmaximum.Asthe (cid:2) E-mail:[email protected] twogravitationalpotentialssettledowntoformasingleone,two (cid:3)C 2004RAS 1440 I.SakelliouandT.J.Ponman lens-shapedshockwavespropagateoutwards,alongthedirection Table1. Targetinformation. ofmerging.Soonafterwards,asingleremnantisformed. Unfortunately,wehavenotyetbeenabletotestobservationallyin Cluster z kpc/arcsec DL(Mpc) asystematicmanner,thatclustermergersproceedastheorypredicts. A399 0.0724 1.36 322.4 Markevitchetal.(1998)settheframeworkforsuchinvestigations, A401 0.0737 1.38 328.5 andrevealedthegrossspectralcharacteristicsofdisruptedclusters. Additionally,theywereabletocommentonthestatisticsofmerg- ers,buttheirdatawerelackingthenecessaryqualitytoprobethe thetwoclusters(Fujitaetal.1996).Aslighttemperatureincrease detailsoftheobservedstructures.Theresultsofsomerecentobser- in-between them was also recorded. Both results led Fujita et al. vationalworkhave,however,beenencouraging(e.g.Sunetal.2002; (1996)tosuggestthatAbell399/401isapre-mergingpair.How- Kempner,Sarazin&Ricker2002),asahotterbar,forexample,has ever,thisscenarioprovidesnoexplanationforthelackofcooling beenfoundinafewcasesseparatingthetwocollidingunits,pro- flowsinthecoresofbothclusters.X-rayobservations(e.g.Peres vidingthemeanstocalculatetherelativevelocityofthemerging D etal.1998)havefoundthattheircentresdonothostcoolingflows o subunits. A detailed comparison of a sample with the numerical w asthemassaccretionrateiszero.Additionally,themodelofFujita n simulationsisstilllacking,anditisunclearwhetherthesimulations lo etal.doesnottieinwellwiththepastROSAT observationalfacts a includeallthenecessaryphysicsandareabletomodeltheproblem d thatbothclustersappeardisrupted:theworkofSlezak,Durret& ed cboerernecdtilsyc.oTvhereerdebaryethaefeowbseexrvaamtipolness,oafndclhuasdtenroptrobpeeenrtipersedthicattehdabvye Gerbal (1994), for example, found evidence for ‘substructure’ in from thesimulations.Recently,forexample,X-rayobservationshaveun- Abell401,andtheROSATHigh-ResolutionImager(HRI)detector h coveredfeatures(coldfonts;e.g.Markevitchetal.2000),thathave (Fabian,Peres&White1997)revealedalinearstructurethatem- ttps beennowexplainedassignaturesofmergingclusters.Coldfronts anatesfromthecentreofAbell399andpointstowardsAbell401. ://a Thisfeatureleadtothesuggestionthatthetwoclustershavealready c had not been predicted by the simulations, mainly owing to the a lackoftheadequateresolutionandthemishandlingofthecooling encounteredeachother,andarenowmovingapart. dem functions.Onlyrecentlysomenumericalsimulationshavemanaged Torecoverthedynamicalstateofthissystem,decideonitspast ic historyandfutureevolution,andderivevitalinformationthatwould .o toreproducethemandassociatetheirpresencetothemotionofa u galaxyorgroupthroughtheICMofanothercluster,andexplainthe helpustotesttheresultsofthenumericalsimulationsofmerging p.c clusters,weobservedAbell399/401withXMM–Newton.Theob- om observations(Bialek,Evrard&Mohr2002). servations are presented in Section 2. Section 3 is devoted to the /m Ideally,onewouldliketoconstructasampleofclustersthatareat n differentstagesoftheirevolution,andtracethemergerevent.Unfor- presentationofthepropertiesofeachclusterindividually,asfound ras tiusnnaottetlryi,vfiianld.iPnrgojcelcutsitoenrseafftedcitfsfeorrenptassttaigneasccoufrtahteemdeetregrimnginsaetqiounesncoef fprroompetrhtieesXoMfMth–eNreewgtioonndbaettawaenednathnealytwsios.iIsninSveecsttiiognat4edt.heSeXc-trioayn /article theirphysicalpropertiesinfluenceseverelytheirclassificationand 5 presents and discusses the X-ray properties north of Abell 401 -a taxonomyinoneofthestages.Abell399andAbell401appearata aSteclatirogne6ra,daini.dTthheeirraladrigoep-srcoapleeretinevsiroofntmheenctluisstdeirsscuarsesepdreinseSnetecdtioinn bstra firstsightasaverygoodexampleoftwoclustersatearlystagesof c merging.Theyareequallyrich,andpastX-raymissionshavefound 7. Finally, in the discussion section (Section 8) we present mod- t/35 els for the dynamical states of both clusters that can fit well the 1 bothofthemtobeattemperaturesbetween7and8keV.Theyhave /4 beenthesubjectofpastinvestigationsandhavebeenobservedin XMM–Newton,radioandopticalresults. /14 3 differentwavelengths,fromtheopticaltoX-ray. 9 Theirprojectedseparationis∼36arcmin∼2.96Mpc,1 approx- 2 XMM–NEWTON OBSERVATIONS /11 3 imately1–2timestheirvirialradii.Theline-of-sightvelocitydif- TheAbell399/401systemwasobservedbytheXMM–Newtonob- 54 f1aen9rd9e7n∼)c.1eT1o1hf0etkhvmeelotswc−io2ty(iOsdeiosgfpeetrhrlesei&oonrdsHeoirlflo2Af0b∼0e17l)l0,30r9eks9pmaencstd−iv24e0(lyG1.iDararyernd∼aime1t1ic8aal0l. stieornvaotnortyhiendfoifuferrpeonitnotibnsgesr,vcaotivoenrsinigsagliavregneianreTaaabrloeu2n.dOitb.sIenrfvoartmioan- 65 by gu 0112260101(101hereafter)wascentredonAbell399,0112260301 e modelsofthesystembasedonthedynamicsofthegalaxiesaround (301) on Abell 401, 0112260201 (201) in between the two clus- st o the Abell 399/401 system reached the conclusion that it consists n tersand0112260401(401)tothenorthofAbell401.Duringeach 0 aboundclusterpair(Oegerle&Hill1994),andthatthegalaxies 3 observationtheMOSinstrumentswereoperatinginthePrimeFull- A obfotbhocthlucstleursst.eArsdsdhiotiuolndalmlyo,vaestihnetihrelintoet-aolfg-sriagvhittavteioloncailtypodtieffnetriaelncoef WthiinndfiolwtermwoadseuasneddtfhoerPthNe1in01th,e20P1rimanedFu4l0l1WoinbdseorwvaEtxiotennsd,eadn.dTthhee pril 2 0 is smaller than their velocity dispersions, it is probable that the mediumfilterwasusedduringthe301observation.Amosaicofall 19 encounter between the two clusters is taking place essentially on thepointingsispresentedinFig.1. the plane of the sky. Basic properties of the clusters are given in Table1. 2.1 Datareduction Previous studies have reached contradictory conclusions about thepasthistoryofthepair.Thefirstattemptstorevealsignsofinter- All data sets were processed with the XMM–Newton SAS v. 5.3. actionsintheregionbetweenthetwowiththeEinsteinobservatory EMCHAINandEPCHAINwereusedtoobtainthecalibratedeventlists didnotleadtoanystrongconclusions(Ulmer&Cruddace1981). fortheMOSandPNinstruments,respectively.Duringtheprocess- The ASCA satellite found evidence for some enhancement in the ing,asearchfornewbadpixelswasallowedbyswitchingonthe X-ray flux above what is expected from just the superposition of WITHBADPIXFINDparameter.Thecalibratedeventfilesweresubse- quentlyfilteredtokeeponlytheeventswithPATTERN=0.Addition- ally,wecleantheeventlistsforperiodsofhighbackground.This 1Throughoutthispaperweuse H0 =71kms−1 Mpc−1,(cid:4)M =0.3and cleaningprocessreducedtheexposuretimestothosepresentedin (cid:4)(cid:5)=0.7. columnVIIofTable2. (cid:3)C 2004RAS,MNRAS351,1439–1456 A399/401 1441 Table2. Pointinginformation. (I) (II) (III) (IV) (V) (VI) (VII) Rev Obs α(2000) δ(2000) Instr. Exp Expcorr (◦) (◦) (ks) (ks) 0127 0112260101 44.4491255188460 13.0518334856848 MOS1 14.166 11.429 MOS2 14.170 11.599 PN 9.188 5.249 0127 0112260201 44.5827088537386 13.3186112665767 MOS1 18.231 18.133 MOS2 18.234 18.152 PN 12.505 12.395 0395 0112260301 44.7636255225170 13.5472223803563 MOS1 12.953 12.948 MOS2 12.959 12.897 D PN 8.086 8.063 o w 0395 0112260401 44.9844588584281 13.7638057162178 MOS1 11.913 11.882 n MOS2 11.917 11.829 loa d PN 7.143 7.143 e d Notes. I: revolution number; II: observation number; III: pointing RA (α) in ◦; IV, pointing Dec. (δ) in ◦; V: EPIC fro m Instrument;VI:exposuretime(livetimeforthecentralCCD);VII:reducedexposuretime,afterthesubtractionofthe h brightbackgroundflares(seetextformoredetails). ttp s ://a c a Thesescalingfactorsareconsistentwiththefactorsfoundforother d e observations. m ic .o u p 2.3 Imagemosaic .co m Fig.1showsthemosaicofallfourpointingsinthe(0.5–10)keV /m n energyband.Forthismosaicweusetheexposurecorrected,back- ra s ground subtracted images, that we generate and use in the sub- /a sequent analysis. The production procedure we follow will be rtic le explained later in this paper (Section 3.1). For the image mosaic -a b ofFig.1weuseonlytheimagesfromthetwoMOSinstruments s (MOS1 and MOS2). The mosaic was made using the SAS task trac EMOSAIC,withoutapplyinganexposurecorrection. t/35 AsseeninFig.1thepointingswerechosensothattheyliealong 1/4 thelinethatconnectsthetwoclustercores,andeachclusterwasat /1 4 thecentreofoneobservation. 39 /1 1 3 5 3 AVERAGE CLUSTER PROPERTIES 46 5 Inthissectionwederivethepropertiesofeachclusterindividually, by Figure1. Amosaicimageofallfourpointingsinthe(0.5–10)keVen- andcomparethemwithpastresultsfromotherX-raysatellitesof gu e ergyrange.BackgroundsubtractedimagesfromthetwoMOSinstruments thesameandsimilarclusters. st o (MOS1andMOS2)aresuperimposed.Thepixelsizeis8arcsec.Abell401 n istothenorth-eastoftheimage. 03 3.1 Spatialanalysis A p To obtain the overall spatial characteristics of both clusters, and ril 2 0 comparethemwithpreviousfindings,weinitiallyassumespheri- 1 2.2 Backgroundtreatment 9 cal symmetry and fit the surface brightness distributions with the Background images and spectra were generated from the ‘blank- traditionalβmodel(e.g.Cavaliere&Fusco-Femiano1976). sky’eventlists(D.Lumb’sbackgroundfiles;Lumb2002).Theco- Forthepurposeofanysubsequentspatialanalysis,wefirstcre- ordinateframesofthesefieldswereconvertedtothecorresponding atebackgroundsubtractedandexposurecorrectedimagesofboth framesforeachpointing.Thebackgroundeventlistswerefiltered clustersinthe(0.5–10.0)keVenergyrange.Thebackgroundand forPATTERNinthesamewayasthedata,andperiodsofhighback- exposurecorrectionisperformedasfollows.Imagesandexposure groundlevelsthatarestillpresentinD.Lumb’sfiles,wereremoved mapsaregeneratedfromthecleanandfilteredeventlistsinnarrow by applying a 3-σ cut-off. Subsequently, the background events energybandsfrom0.5to10.0keV[‘narrow-energy-range’(NER) werescaledtomatchthebackgroundlevelsofeachinstrumentand images]. Each energy band is 0.5-keV wide. Similar NER back- observationbyscalingtheout-of-fieldeventsasinPratt,Arnaud& ground images are created from the blank-sky event files. Subse- Aghanim(2001).ThescalingfactorsweuseforMOS1,MOS2and quently,eachNERbackgroundimageissmoothedandscaled,using PNare:1.00,0.95,1.15,forthe101observation;1.06,0.95,1.15 theappropriatescalingfactorsforeachobservationfoundinSec- for201;1.10,1.03,1.44for301;1.13,1.05,1.30forthe401one. tion2.2.ThesmoothedandscaledNERbackgroundimageisthen (cid:3)C 2004RAS,MNRAS351,1439–1456 1442 I.SakelliouandT.J.Ponman sector−N sector−W sector−N sector−W to A401 D o w n lo a d e d sector−E sector−S sector−E to A399 sector−S from h Figure2. XMM–NewtonimagesofAbell399(left-handpanel)andAbell401(right-handpanel).TheimageshavebeensmoothedwithGaussiankernelsof ttps σ =2pixels=16arcsec.Thefoursectors,centredonthecentralcDsineachcluster,andusedinthesubsequentanalysis,areshown. ://a c a d e m subtractedfromthedataimage.Eachinstrumentistreatedindepen- centraldominant(cD)galaxies,thatresidewithinthecoreregions ic dently.Then,eachNERbackgroundsubtractedimageiscorrected ofbothclusters.TheselocationsaremarkedonFig.2.Weinclude .o u for exposure and vignetting, by dividing with the appropriate ex- in the profiles only counts that come from regions of the charge- p.c posuremap.Finally,allthebackgroundsubtracted,vignettingand coupleddevices(CCDs)thatwereexposedformorethan0.5per om exposurecorrectedNERimagesareco-addedtocreateoneimage centofthetotalexposuretime.TheprofilesarefittedinSHERPAby /m foreachinstrumentinthe(0.5–10.0)keVenergyrange. theβ model.Foreachcluster,theaccumulatedprofilesfromeach nra s Wefirstusetheabovecreatedimagestoderivetheglobalspatial instrumentarefittedsimultaneously,leavingeachnormalizationasa /a propertiesofeachclusterinSection3.1.1,andlater(Section3.1.2) freeparameter.Conversely,thecoreradius(rc)andtheβparameter rtic toinvestigatetheirazimuthalvariations. arelinked. le-a Thefitswithasingleβmodelgiveacoreradiusandabetavalue bs ofr =1.903arcmin=155.3kpc,andβ=0.498withχ2/d.o.f.= tra 3.1.1 Globalproperties c c 383/115forAbell399,andrc =2.048arcmin=169.6kpc,β = t/3 Weconstructsurfacebrightnessprofilesforbothclusters,byaccu- 0.590,χ2/d.o.f.=343/115forAbell401. 51 /4 mulatingcountsin40concentriccircularannuliofwidth15arcsec, Fig.3showstheazimuthalaveragesurfacebrightnessprofilesand /1 aroundeachclustercentre.Theseprofilesarecentredonthepeakof thebest-fittingsingleβmodel.Thedataandmodelforeachinstru- 43 9 theX-rayemission,whichcoincideswiththelocationofthelarge ment are shown independently. It is clear from this figure that a /1 1 3 5 4 6 5 b y g u e s t o n 0 3 A p ril 2 0 1 9 Figure3. SurfacebrightnessprofilesofAbell399(left-handpanel)andAbell401(right-handpanel).TheaccumulatedprofilesfromeachEPICinstrument areshown.Thebest-fittingβmodelisalsoplottedindividually.Thepixelsizeis8arcsec. (cid:3)C 2004RAS,MNRAS351,1439–1456 A399/401 1443 Table3. Spatialanalysisresults. largererrorstoperformtheerrorcalculation(using(cid:12)χ2 =1)for thefittedparameters.Thisallowsfortheeffectsoftheexcessscatter Cluster Sector rc β inweakeningtheconstraintsonourderivedparameters.Theerrors (arcmin) derivedinthiswayfortheglobalfitareincludedinTable3. A399 global 1.903±0.007 0.498±0.001 InspectionofFig.2suggeststhatsphericallysymmetricβmodels A401 global 2.048±0.004 0.590±0.001 mightnotbegoodrepresentationsofthesurfacebrightnessdistri- butionsofthetwoclusters.Forexample,itcanbenotedinthesame A399 N 2.113 0.512 figurethatthecDinAbell399isnotatthecentreoftheX-raysurface W 3.129 0.574 brightnessdistribution,whichadditionallydoesnotappearspher- S 2.143 0.497 ically symmetric, especially at large radii. Conversely, Abell 401 E 0.997 0.510 iselongatedalongthenorth-east–south-westdirection.Todisclose A401 N 2.716 0.727 these anomalies, we perform each image analysis in four sectors W 2.343 0.649 aroundthecentralclustergalaxy. D S 1.937 0.545 o w E 1.479 0.515 n lo a d 3.1.2 Sectors e d single β model does not represent well the inner regions of Intheprevioussectionwehavefoundthatthesurfacebrightness from Abell399,whereanexcessabovethemodelisapparent.Thead- distributionofbothclusterscanbedescribedbyflatβ models.In h ditionofaGaussiantodescribethecentralexcessimprovesthefit, additiontothiscomponent,somecentralexcessisrequired.Given ttps althoughitisstillapoordescriptionofthedata,providinganew theapparentproximityofthetwoclusterstoeachother,wemight ://a statisticofχ2/d.o.f.=300/111.Duringthelastfittingprocedure, expect that tidal interactions have extended each cluster gas to- ca d the full-width-half-maximum (FWHM) of the Gaussian, rc and β wards the neighbouring cluster. This effect would manifest itself em of the β model, are left free to be determined by the fit. Such a in azimuthal differences in the surface brightness distributions at ic .o compositefitgivesalowβ value,similartothesinglecomponent largeradii.Toexplorethisexpectation,wemodeltheradialcluster u p β-modelfitting,withβ =0.516andasimilarcoreradiusofr = profilesinfour90◦ sectorsforeachcluster,centred,asinSection .c c o 2.176arcmin=177.6kpc.Wefindthatthebest-fittingGaussian 3.1.1,onthepeakoftheX-rayemissionwhichcoincideswiththe m /m hasawidthofFWHM=1.147arcmin=93.6kpc. cDgalaxy.ThesectorsweuseareshowninFig.2,andarelabelled n We find similar behaviour in Abell 401, where a smaller cen- N,W,SandEforeachcluster.Weaccumulatecountsinannular ras tbreaslte-fixtcteinssgiβsamlsoodesleedno.nIoftwcehaandgdeasiGgnauifiscsiaannt,lyth;ethpernoepwertviaelsuoesftahree sgelegmβemntosdoefl,waisdtihn3S0ecatricosnec3,.a1n.1d,eaancdhtrhaediraelspurltosfilliestiesdfiitnteTdabbylea3si.n- /article r =2.116arcmin=175.2kpc,andβ =0.596,withχ2/d.o.f.= For clarity, in Figs 4 and 5 we compare the surface brightness -a c b 311/111.ForthecentralGaussianthefitgives:FWHM=0.907ar- profilesinthefoursectorsforeachclusterwiththeβmodelsfound stra cmin=75.1kpc. fromtheglobalfitstothedatawithasinglemodel.Thesefigures c t/3 AscanbeseeninTable3,themodellingofthesurfacebrightness also plot the temperature profiles found in the same sectors and 5 1 distributionsofbothclustersresultsinsmallβvaluescomparedto theirderivationanddiscussionwillbepresentedlaterinthispaper /4 thecanonicalvalueof0.65thatdescribesonaveragetheprofilesof (Section3.2.3). /14 3 richclusters.Thesevaluesdonotchangesignificantlyeitherwith Inspection of Figs 4 and 5 reveals that the clusters are not az- 9 /1 theadditionoftheGaussianasstatedabove,orwiththeexclusion imuthallysymmetric.Oneofthemostintriguingfeaturesthatarise 1 3 oftheinner(15–20)arcsecfromthefit. fromtheabovecomparisonisthatatlargedistancesfromthecluster 54 6 Neitherofthetwocentralgalaxiesisknowntohostanactivenu- centres,theICMsappearmoreextendedonlyinthesectorsthatface 5 b cleus,whosepresencecouldbeinvokedtoexplaintherequirement theothermemberofthebinarysystem.Additionally,Abell399is y foranextra,butsmall,centralcomponent.Itisalsoapparentthatthe moreextendedalsotothewest.ForAbell399wefindtheβ index gu e resultsofthecompositefitssupportthisstatement:wefindthatthe toliebetween0.497(sectorS)and0.512(sectorN),straddlingthe st o centralemissionisnotowingtoapointsource,asthewidthofthe valuesfoundfromtheazimuthallyaverageanalysis.Therangeof n best-fittingGaussiansislargerthantheXMM–Newtonpoint-spread r iswider.SectorEgivesthesmallest(r =0.997arcmin),and 03 fturanlcetixocnes(sPScoFu).ldAbneotthheartpthlaeuistiibsleowexinpglantoateimonisfsoirotnhefroobmsedrevnesdecaennd- wsechcitcohrWistthheeolnaergtehsatt(irscf=aci3n.g12A9baerlclm40in1),.aTrceheavvearlaugeessfboertsweecetonrtNhe, April 2 0 coolgasthatresidesintheclustercores.However,theexcessesare quotedextremes.Excludingfromthefittheinnerpointsdoesnot 1 9 notaslargeasthoseencounteredinmassivecoolingflowclusters. makeanydifferencetothebest-fittingvalues. WewillcomebacktothispointinSection3.2,whereweinvestigate AlthoughAbell401,looksmoresymmetricthanAbell399,the spectroscopicallythepossibilityofacoolingflow. rangeofβvalueswefindislarger.SectorsSandEgivethesmallest Theglobalfitsforbothclustersresultinlargevaluesofχν(χν∼ β values(0.545and0.515,respectively).Thefittothedatafrom 3).Underthesecircumstancestheuseofthenormal(cid:12)χ2=1crite- thesectorthatisthefurthestawayfromAbell399(sectorN)re- riontodefineparametererrors(Lampton,Margon&Bowyer1976) sults in the steepest β value of 0.727, and the largest r value of c is not valid, and naive application of this prescription is likely to 2.716arcmin.ThecoreradiusofthesectorthatisfacingAbell399 yieldunrealisticallysmallconfidenceregions.Althoughthereisa (sectorS)isanaveragevalue(r =1.937arcmin). systematic excess above the model in the cores of both clusters TosummarizetheresultsofsectionsSections3.1.1and3.1.2,we (Fig. 3), most of the excess scatter about the fitted model which findβvaluesintherange0.50–0.57inAbell399,and0.50–0.73in givesrisetothesehighvaluesofχν isscatteredwidelyinthera- Abell401.Thesevaluesaresmallerthanthe‘canonical’valueof dius. We therefore make allowance for this scaling the statistical 0.65forclustersofgalaxies.Suchsmallβ valueshavebeenfound errorsupbythefactorrequiredtogiveχν =1,andthenusethese before in binary and merging clusters of galaxies (e.g. Donnelly (cid:3)C 2004RAS,MNRAS351,1439–1456 1444 I.SakelliouandT.J.Ponman D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/3 5 1 /4 /1 4 3 9 /1 1 Figure4. Surfacebrightness((cid:13))andtemperature(kT)profilesforeachofthefoursectorsinAbell399.ThesurfacebrightnessasregisteredonthePNdetector 3 5 onlyareshown.Thesizeoftheerrorsissimilartothesizeofthedatapoints.Thesolidlineinthesurfacebrightnessplotsrepresentstheglobalβmodelfound 46 inSection3.1.1.Theerrorsshownforthetemperaturearethe90percenterrors. 5 b y g u e etal.2001).OnlythedatafromsectorNandWinAbell401,which background subtracted and exposure corrected images discussed s areontheoppositesideoftheothercluster,havelargerβ values above, for this spatial analysis, and fit the images of each instru- t on of 0.73 and 0.65, respectively. However, as we will demonstrate mentandclusterindividuallyinSHERPA,usingtwo-dimensionalβ 03 later(Section4),thenorthsectorinAbell401isunusualalsoinits models.Thevaluesofrc andβ arefixedtothebest-fittingvalues Ap temperatureprofile.Abell399appearsmoredisrupted,andascan found in the azimuthal average one-dimensional fits with a sin- ril 2 alsobeenderivedfromFig.4andTable3,thesurfacebrightness gleβ model.Thecentresofthetwo-dimensionalmodelsarefixed 01 distributioninalmostallsectorsisextended,withsmallβ values. to the values used for the one-dimensional analysis, which coin- 9 SectorEisabnormalgivingasmallcoreradiusofr =0.997ar- cidewiththelocationofthecentralgalaxies.Thenormalizationof c cmin = 81.35 kpc. Additionally, we find that both clusters show thethreeinstrumentsareleftfreetovary.Theresidualimagesfor acentralexcesswhichismoreapparentinAbell399,andwecan the MOS cameras are co-added and smoothed using the SAS task confidentlyexcludethepossibilitythatthisisowingtoanyactive ASMOOTH.Fig.6showscontourplotsoftheresidualsmoothedim- nucleithatresidewithinthecoreoftheclusters. agesoverlaidontoDSSimagesofthecentralregionsofbothclusters. A few new intriguing features appear from the above two- dimensional analysis, which are not very apparent in the one- 3.1.3 Two-dimensionalresiduals dimensional plots. Firstly, in both clusters, the positive residuals Toinvestigatetheoriginofthecentralexcessinbothclustersseen lie on one side of the central galaxy: to the south of the galaxy inthesurfacebrightnessprofiles,andvisualizetheazimuthaldif- inAbell401,andtothenorthoftheoneinAbell399withsome ferencesthattheresultsofSection3.1.2suggest,weperformtwo- additionalextensiontothewest.Weexpect,though,thatsomeof dimensional fits to the image data for both clusters. We use the theresidualsinAbell401stemfromthefactthatwefitacircular (cid:3)C 2004RAS,MNRAS351,1439–1456 A399/401 1445 D o w n lo a d e d fro m h ttp s ://a c a d e m ic .o u p .c o m /m n ra s /a rtic le -a b s tra c t/3 5 1 /4 /1 4 3 9 /1 1 Figure5. AsinFig.4butforAbell401. 3 5 4 6 5 b y g (a) (b) u e s t o n 0 3 A p ril 2 0 1 9 2’ 2’ Figure6. Positiveresidualsofthetwo-dimensionalfitoverlaidontoaDSSimage:(a)Abell401;and(b)Abell399.Thelowercontourleverisapproximately at3σ ofthesurrounding‘background’level.Theimagescaleisalsoshown. (cid:3)C 2004RAS,MNRAS351,1439–1456 1446 I.SakelliouandT.J.Ponman symmetricmodeltoaclusterthatisintrinsicallyelongatedalong Table4. Results:spectralfits.Theerrorsquotedarethe90percenterrors thesamedirectionastheexcessseeninFig.6.However,ifthisis foroneparameterofinterest.SolarabundancesweretakenfromAnders& theonlyreasonfortheappearanceoftheresidualsinAbell401,it Grevesse(1989). cannotexplainwhywedonotseesimilarresidualsontheopposite sideofthegalaxytothenorth-east.Ifweleavetheellipticityand Cluster NH kT Z χ2/d.o.f. positionangleofthetwo-dimensionalβ modelfree,weobtainan (×1021cm−2) (keV) (Z(cid:10)) ellipticityofe=0.115,apositionangleof2.0.Theresidualsare A399 0.812+−00..004177 7.23+−00..1271 0.22+−00..0022 1335/930 verysimilar,beingonthesouth-westsideofthecentralgalaxyonly. Similarly,thetwo-dimensionalfittotheAbell399imagesreveals A401 0.729+−00..004015 8.47+−00..1328 0.25+−00..0022 1445/1203 thatthecentralexcessseenintheone-dimensionalprofilesofFig.3 canbeattributedtoemissioncomingfromonesideofthegalaxy, mainlythenorthandwest. Thus, the two-dimensional analysis reveals the shape of the D o central excesses in both clusters, which were noted in the one- w n dimensional image analysis. The positive residuals of Fig. 3 are lo a prominent in the innermost regions of the clusters, extending d e (in2–F3ig)sar4camnidn5(cid:8)th(e1s7e0e–x2t5e0n)sikopncsaapropuenardttohceacreryntoranlognallaarxgye.rAscsasleeesn. d from h ttp s 3.2 Spectralproperties ://a c a Foranyfollowingspectralanalysis,weusethecleaneventlistsfor d e thedataandbackground.Weimposefurtherrestrictionsbykeeping m eventsthathaveFLAG=0andPATTERN=0.Thisfilteringensuresus ic.o u thattheeventsweuseforthespectralanalysisarecosmicinorigin, p .c and they are not generated by, for example, cosmic rays or CCD o m defects.ResponsesandauxiliaryfilesaregeneratedwithRMFGEN- /m 1.44.6andARFGEN-1.48.10,respectively. nra Forthefittingprocedure,weonlyusethe(0.6–7.5)keVrangefor s/a theobservation301(Abell401).Thereasonweincreasethelow- rtic energylimitisbecauseitwastakenwiththemediumfilter,whilefor le -a alltheblank-skybackgroundfilesthethinfilterwasused.Theeffec- b s tiveareasofthethinandmediumfiltersmostlydifferatlowenergies tra (<1keV;XMM–NewtonUserHandbook).Thus,toavoidinaccurate ct/3 subtractionofthebackgroundatlowenergies,weexcludeenergies 51 below0.6keV.Thiscut-offmaycausesomeoverestimationoftem- /4/1 peraturesbyasmallamount,and/orinaccuratedeterminationofthe 43 9 absorbingcolumndensity.However,giventhatAbell401isahot /1 1 cluster,wedonotexpecttointroduceanysignificantbiastowards 3 5 hightemperatures.Severaltestswithandwithoutthe(0.3–0.6)keV 4 6 5 energyrangeshowthatthetemperaturescalculatedwithandwith- b y outtheincreasedlow-energylimitagreewithintheerrors.Forthe g u sakeofconsistencybetweenthedifferentobservations,wedecideto e s usethesameenergyrange(0.6–7.5)keVforanysubsequentspec- t o n tralanalysis.Anotherreasonthatthisselectionisdesirable,isthat 0 3 calibrationproblemsthataremostlyprominentatlowenergiesare Figure7. XMM–NewtonspectraofthecentralregionsofAbell399(top A avoInidtehde. following sections we present the results of the spectral pacacnueml)ualnadtedAbfreollm40th1e(binontteorm10p-aanrceml).inMrOegSio1n,aMroOuSnd2eaancdhPcNlusstpeercctreantarree. pril 20 analysisforbothclusters. Thebest-fittingmodelandresidualsofthefitarealsoshown.Datafromthe 19 twoMOScamerasareshownasblackandgreycrosses,andgivethesame countrate.ThespectraaccumulatedfromthePNinstrumentarealwaysthe onesathighervaluesofcnts−1keV−1. 3.2.1 Globalspectralproperties Spectraofbothclustersareaccumulatedoveracircularregionwith radiusof10arcminaroundeachclustercentre.Backgroundspectra ThegalacticabsorptionforthedirectionofbothclustersisNH,G= aretakenfromtheblank-skybackgroundfilesinthesameregions 1.03 × 1021 cm−2. During each fitting procedure, the hydrogen on the detectors as for the data spectra. The background spectra columndensity(N ),metalabundance(Z),temperatures(kT)and H arescaledbythefactorsfoundinSection2.2.Wegeneratespectra normalizationsareleftasfreeparameters.Theirbest-fittingvalues fromeachinstrumentindependently,andsubsequentlyfitallthree aretabulatedinTable4,alongwiththegoodnessofeachfit.InFigs7 instrumentsinXSPECsimultaneously. (upperpanel)and(lowerpanel)wepresentthespectraofAbell399 ThespectraarefittedwithaMEKALmodelmodifiedbytheline-of- and Abell 401, respectively. The best-fitting thermal models, and sighthydrogenabsorption,asdescribedbytheXSPECWABSmodel. theresidualsofthefitsarealsoshowninthesameplots. (cid:3)C 2004RAS,MNRAS351,1439–1456 A399/401 1447 D o w n lo a d e d fro m h Figure8. ProjectedtemperatureprofilesforAbell399(a)andAbell401(b).Thewidthofeachannulusis1arcmin(solidlines).Thederivedtemperaturein ttp s 2-arcminwidebinsfortheregionsfrom6to10arcminisshownwithdottedlines.Theglobaltemperatures(solidhorizontalline)andtheirconfidencelimits ://a (dottedhorizontallines)arealsoshown. c a d e m Forbothclusters,wefindanabsorbingcolumnconsistentwiththe atlargeradiiderivedfromASCAdata(e.g.Markevitchetal.1998) ic.o galacticvalue.Theglobaltemperaturesandabundancesareingood andROSATdata(Irwin,Bregman&Evrard1999)ledtocontradic- up agreementwithpreviousresultsfromtheASCAsatellite(Fujitaetal. toryresultsforthetemperaturegradientatlargeradii.Thegeneral .co m 1996;Markevitchetal.1998;Nevalainen,Markevitch&Forman trendisthatASCAfindsadeclineinthetemperatureprofilesatlarge /m 1999). radii,whilewithROSAT clustersappearatanearlyconstanttem- n ra perature.ThepastASCAresultsforAbell399arealsoconflicting, s /a 3.2.2 Temperatureprofiles butthisdisagreementcouldbeunderstoodintermsofthedifferent rtic treatmentsforthePSFofASCA,bydifferentauthors.Forexample, le Assuming spherical symmetry, we obtain radial temperature pro- Markevitchetal.(1998)foundthatthetemperatureremainscon- -ab files,byaccumulatingsourcecountsincircularannuliaroundeach stantat∼6.2keVbetween3and16arcmin,slightlylowerthanour stra clustercentre.Thewidthofeachannulusis1arcmin.Asforthe values,butconsistentwithintheerrors.Theyalsofoundacentral ct/3 globalspectralanalysis,wefitthe(0.6–7.5)keVenergyrange.The excess,withthetemperaturewithintheinner3arcmin,escalating 5 1 background is taken again from the blank-sky clean and filtered upto8.5keV,whichisnotevidentintheXMM–Newtonresultsof /4 /1 files,asinSection3.2.Duringthefittingprocedure,theabsorbing Fig.8(a).Conversely,Fujitaetal.(1996)didnotseeanycentralex- 4 3 columnNH isfixedtothebest-fittingvalueforeachclusterlisted cess,andarguedthattheclusterisnearlyisothermaloutto10arcmin. 9/1 inTable4.Theabundancesareleftfreetovary.Intheinnerseven Atlargeradii,theyfoundsomeevidenceforasmalltemperaturein- 1 3 annuli,afterbackgroundsubtractiontherearemorethan80percent creaseintheirdata.Atemperatureincreaseat∼10arcminwasalso 54 6 ofthetotalcountsleftintheenergyrangeweuseforthefits.Only evidentinthetemperatureprofilepresentedinWhite(2000). 5 b the last one or two annuli, are left with (65–75) per cent counts Thus,uptonow,thereisnoconsistentresultforthetemperature y g afterbackgroundsubtraction.Thereducedχ2valuevariesbetween oftheICMoftheclusterat∼10arcminfromthecentreofAbell u e χ2ν=0.55–1.15forAbell399,takingtheseextremevaluesat0.5and 399.Asnotedbefore,wefindasmallincreaseatsuchlargeradii(see st o 9.5arcmin,respectively,whiletherestgivevaluesofχ2 between Fig.8a).Toinvestigatewhetherthisapparentincreaseisaresultof n ν 0 0.94and1.13.ForAbell401,thefitsaregenerallybetter,withχ2 thethelownumberofcountsfromtheclusterattheselargeradii,we 3 ν A lyingbetween0.93and1.12(fortheannuliat4.5and1.5arcmin, increasethesizeofthelastannularbin,andweextractthespectra p respectively).Fig.8showstheresultantprojectedtemperaturepro- inannulibetween6–8and8–10arcmin.Thederivedtemperatures ril 2 files,forAbell399(Fig.8a),andforAbell401(Fig.8b).Inboth areshownasdottedcrossesinFig.8(a).Thecalculatedχ2forboth 01 ν 9 clustersthecalculatedabundancesareconsistentwiththeirglobal are1.07and0.90.Ascanbeseentheresultsareconsistentwiththe values.Bothclustersappearnearlyisothermalintheirinnerregions, resultsfromthe1-arcminwideannuli,showingasmalltemperature andthederivedtemperaturesareconsistentwiththeaveragevalues increase. ofTable4. Anotherpossibilityforthehottertemperaturesderived,couldbe We have also derived deprojected temperature profiles. As ex- thatthescalingoftheblank-skybackgroundfileswasnotadequate, pected,thesearesimilartotheprojectedones,asthereisnostrong butthebackgroundlevelneedstobeincreasedfurther.Totestthis gradientinthetemperature.Ofcourse,thedeprojectionprocedure possibility,weincreasethebackgroundbyafactorof1.2andper- hastheeffectofincreasingtheerrorsofthetemperatures. formthesamespectralfitstothewideannuliasbefore.Thederived AscanbeseeninFig.8(a),Abell399appearsisothermalatthe temperatures are 6.45+0.73 and 7.61+1.46 keV for the inner [(6–8) −0.67 −0.95 global temperature out to ∼8 arcmin = 0.65 Mpc. At large radii arcmin] and the outer [(8–10) arcmin] annuli, respectively. Thus, [(8–10)arcmin],thespectralfitsgivehighervaluesforthetemper- a 20 per cent increase of the background level results in the re- ature.Pastresultsforthetemperatureslopeofclustersofgalaxies duction of the temperature by ∼14 per cent, from a temperature (cid:3)C 2004RAS,MNRAS351,1439–1456 1448 I.SakelliouandT.J.Ponman of8.84+1.55keV.Thisscalingreducesthetemperaturesoftheinner (ii) theinner2arcminofsectorsNandWareslightlyhotterthan −1.29 annulibyasmallamount,withadecreaseof∼4percentofthemax- the rest, and are probably responsible for the central temperature imum.Increasingthebackgroundscalingfactormoreleadstoworse increasenotedinFig.8(b); fits.Generally,themodelsdonotrepresentthedataatenergiesof (iii) thereisatemperaturedropouttolargeradiialongsectorN. lessthan1keV.Moreabsorptionisrequiredattheselowenergiesto Thispropertywillbediscussedlaterinthispaper(Section5). compensatetheincreasedfluxfromthelowertemperatureplasma,if thetemperatureistobelowerthantheoneshowninFig.8(a).There isnoobviousreasontosupportanincreaseoftheabsorbingcolumn 3.3 Centralregions densitywithradiusfromtheclustercentre.Thus,weconcludethat PastX-raydatashowednosignificantevidenceforthepresenceof anincreaseofthescalingfactorofthebackgroundlevelbyafactor coolgasineitherclustercore(e.g.Peresetal.1998).Ourhigher ofnotlargerthan1.2couldsuppressthehightemperaturesfound qualitydataconfirmtheabsenceofcentrallyconcentratedcoldma- bythepreviousanalysisatlargeradii,withoutchangingthetemper- terial.Wehavefoundthatasingletemperaturemodelgivesanad- atureoftheinnerannulimuch.However,wearenotawareofsuch D equaterepresentationofthespectraintheinner1-arcminregions, o largescalingfactorsrequiredinanyotherdatasets,andwedecide w tousethefactorsfoundinSection2.2,andstatewherenecessary leavingnoroomforanyextrathermalornon-thermalcomponents. nlo theeffectofanincreasedvaluetothederivedtemperatures. Trialswithcoolingflowmodelsfailtoprovideacceptablefits.Thus, ade weconcludethatnoneofthetwoclustershostsevenamildcooling d atuCreonovuetrstoely∼,1A0bealrlcm40i1ns=ho0w.8s3isMothpecrm(seaelitFyiagt.t8hbe).glTohbearleteimsaplesro- flowinitscentre.Additionally,thisresultsupportsthestatementsof from someevidenceforacentraltemperatureincreaseintheinner∼2ar- Spreocfitiloens3a.r1e.2n,otthoatwtihnegcteontarnalaecxtciveessgsaeleanxyi,natshethseurrefaicsenborisgphetcntersasl http cmin,aspreviouslynotedintheASCAdata(e.g.Nevalainenetal. s 1999).PreviousanalysisoftheASCAdataindicatethattheICMata evidenceforit. ://a c distanceof(8–16)arcminmightbecoolerthanintheinnerregions ad byafactorof∼0.6(Nevalainenetal.1999). 3.4 Hardnessratio(HR)maps em ic .o In Fig. 9 we present the hardness ratio images of the central 10 u p 3.2.3 Sectors arcminforbothclusters.Thesemapsareobtainedbydividingahard .c o image(H )bythesoft(S ).Theenergyrangesforthesoftand m Todiscloseanyazimuthaldependenciesofthetemperatureprofiles, hardimagiemsareS =(0.5–im1.0)andH =(2.0–5.0)keV.Weavoid /m weobtainthespectrainconcentricannuliinthefoursectorsshown the (1.0–2.0) keVimenergy range as it cimontains strong background nra inFig.2,asforthespatialanalysis.Wenowincreasethewidthof lines. The S and H values are corrected for exposure, and a s/a each annulus, so that the number of counts recorded in each one backgroundiims subtracimted, in a similar manner as in Section 3.1. rtic isadequateforthefullspectralmodelling.Weperformexactlythe le Beforewedividetheimages,weadaptivelysmooththem,usingthe -a samefittingproceduresasinSection3.2.2.Thederivedtemperature b smoothingscalesderivedforthehardimage.Onthehardnessratio s profilesareshowninFig.4forAbell399andFig.5forAbell401. mapsweoverlaytheradiocontours,whichshowthelocationand trac The same figures show the surface brightness distributions in the extent of the radio haloes of the clusters (see Section 6 for more t/3 secAtofres,wanstdriwkienrgedpirsocpuesrsteiedsefaorrlitehreintetmhipsepraatpuerre. structureinAbell detTahiless).eimagesshowthesmall-scalevariationsnotedinthetemper- 51/4/1 399emergefromthesefiguresasfollows: atureprofilesofSection3.2.3.Forexample,theregioninthe(2–4) 439 (i) thehightemperatureintheinner2arcmininsectorS; arcminintheeastsectorinAbell399seemstocoincidespatially /11 3 (ii) the high temperature in the outer (6–10) arcmin region in with the extended radio emission from this cluster. The emission 5 4 sectorE;and from the north of Abell 401 appears softer than elsewhere in the 65 (iii) alongsector-N,towardsAbell401,thetemperatureprofile cluster,confirmingtheresultsofthespectralfitsofSection3.2.3. by g appearstobethemostregularofthefour,showingthegastobe u e isothermalattheglobaltemperature. 3.5 Summaryofglobalresults st o n ThehightemperaturefoundintheouterannuliinsectorEshould 0 InTable5wecollectsomekeypropertiesofbothclusters,derived 3 bethemainreasonfortheincreasedtemperaturefoundintheaz- fromtheXMM–Newtonanalysis.Thecentralnumberdensityofthe Ap fiimnrotumhtehtarhalelwyclsXuyMsmteMmr–iesNtrreaicwthtteeormnlopimwer,aamgtuearske,iipnnrgtohtfihisleesssepocetfcoStrreaactmtliaoornrgee3d.r2ea.pd2ei.inAtdhesensflteouennx I(C(cid:13)M0) ifsoucnadlcufrloamtedthbeysdpeaptiraoljeacntainlygsitsheofceSnetcrtailonsu3rf.1ac,eusbirnigghetqnuesas- ril 2019 tions (3) and (4) from Sakelliou, Merrifield & McHardy (1996). thebackgroundlevel.Ifweincreasethescalingofthebackground Thecoolingtimet ,whichcanbetreatedasanindicationofthe byafactorof1.2,asinSection3.2.2,wefindatemperatureforthe cool presenceofacoolingflow(Sarazin1986),isalsogiveninTable5. lastannuliinsectorEof8.81+4.99keV,comparedtoatemperatureof −2.30 Thenumberdensityn andcoolingtimet givenaretheircen- 11.48+4.94 keVusingtheoriginalscaling.Thus,anincreaseofthe 0 cool −2.80 tralvalues.FortheM valuewefollowFinoguenov,Reiprich& scalingfactorbytheadditionalfactorof1.2,reducesthetemperature 500 Bo¨hringer (2001), and for R the results of Evrard, Metzler & byalmost25percent.Abetterestimationofthetemperaturealong 200 Navarro(1996)areused. sectorEatlargeradiiwillhavetowaitfordatawithlongerexposures thatcompensatefortheinherentlylowfluxfromthissector. Abell401alsoshowssomesmall-scaleirregularitiesinthetem- 4 BETWEEN ABELL 399 AND ABELL 401 peratureprofilesofFig.5asfollows: We investigate next the properties of the region between the two (i) thesectorthatisfacingAbell399appearsthemostregular, clusters.Theseparationofthecoresofthetwoclustersis∼3Mpc, nearlyattheglobaltemperatures; andtheirR values,ascalculatedfromtheirglobaltemperatures 200 (cid:3)C 2004RAS,MNRAS351,1439–1456
Description: