ChineseJournalofAstronomyandAstrophysicsmanuscriptno. (LATEX: N5055.tex; printedonFebruary5,2008; 15:17) X-Ray Properties of the Point Source Population in the Spiral Galaxy NGC 5055 (M63) with Chandra 7 0 0 1⋆ 1 2 2 2 BingLuo ,JiyaoChen ,ZhongliZhang ,YuWang ,Jingying Wang2 andHaiguangXu2 n a J 5 1 DepartmentofPhysics,FudanUniversity,220HandanRoad,Shanghai 1 200433,PRC v 2 DepartmentofPhysics,ShanghaiJiaoTongUniversity,800Dongchuan 5 Road,Shanghai200240,PRC 2 1 1 0 7 Abstract By analyzing the Chandra ACIS S3 data we studied 0 theX-raypropertiesofthelow-massandhigh-massX-raybinary / populationsin the nearbyspiralgalaxyNGC5055.A totalof43 h p X-raypointsourcesweredetectedwithinthe2effectiveradii,with - 31sourceslocatedonthediskandtherest12sourcesinthebulge. o The resolved pointsources dominatethe total X-ray emission of r t thegalaxybyaccountingforabout80%ofthetotalcountsin0.3– s 10keV.Bycarryingoutthespectralfittingswecalculatedthe0.3– a : 10.0keVluminositiesofallthedetectedX-raypointsourcesand v foundthattheyspanawiderangefromafew1037ergs−1toover i X 1039 erg s−1. After compensating for the incompleteness at the r low luminosity end, we find that the correctedXLF of the bulge a population is well fitted with a broken power-law model with a break at 1.57+0.21 × 1038 erg s−1, while the profile of the disk −0.20 population’sXLFagreeswithasinglepower-lawdistributionwith aslopeof0.93+0.07.Thediskpopulationissignificantlyricherat −0.06 >2 × 1038 erg s−1 than the bulge population, inferring that the ∼ disk may have undergonerelatively recent, strong starbursts that significantly increased the HMXB population, although ongoing starbursts are also observed in the nuclear region. Similar XLF profiles of the bulge and disk populations were found in M81. However, in most other spiral galaxies different patterns of the spatial variation of the XLF profiles from the bulge to the disk havebeenobserved,indicatingthatthestarformationandevolu- tionhistorymaybemorecomplexthanwehaveexpected. Keywords: galaxies:individual(NGC5055)—X-ray:binaries— stars:luminosityfunction—stars:formation 2 Luoetal. 1 INTRODUCTION ThestudyoftheX-raypropertiesofthebrightpointsourcesin spiralgalaxies, mostofwhicharelow-massX-raybinaries(LMXBs)andhigh-massX-raybi- naries(HMXBs),mayprovideuswithvaluableobservationalconstraintsonthe starformationandevolutionhistoryinthediskandbulgeofthehostgalaxy.With the superb high spatial resolution of the Chandra X-Ray Observatory, a large populationofX-raypointsourceshavebeenresolvedforthefirsttimeinsome nearbyspiralgalaxies.Inafewspecificcases,distinctX-raycharacteristicshave been revealedforthe sourceslocated in the bulgeand those in the disk, which can beinterpretedasthe evidenceforthe spatialvariationof stellar population compositionthatreflectsthedifferencesinstarformationhistory(e.g.,Tennant et al. 2001;Kong et al. 2002;Soria & Kong 2002). In this paper we present a Chandra study of the point sources in the nearby starburst galaxy NGC 5055 (M63;SA(rs)bc),whichisoneoftheprototypeArmClass3flocculentgalaxies (Elmegreen& Elmegreen1987)thatshowsregular,two-armspiralstructureto aradiusof4.0kpcinthenear-infraredband.Theopticalcenterofthegalaxyis identifiedatRA=13h15m49.25sDec=+42d01m49.3s(J2000;Maozetal.1996). TheLINERnucleusisUVbrightandissurroundedbyluminousyoungstarclus- ters, showingclearstellar absorptionsignatures(Maozetal. 1998;Leithereret al. 2002). The inclination and position angles of the galaxy are deduced to be 58◦ and103◦,respectively(Garcia-Gomez&Athanassoula1991).Weorganize the paper as follows. In §2, we describe the observationand data reduction.In §3, we presentthe imaginganalysis. In §4, we investigatethe X-rayproperties of the detected point sources, which includes the temporal and spectral analy- sisaswellasthecalculationsofhardnessratiosandX-rayluminosityfunctions (XLFs).Finally,wediscussandsummarizetheresultsin§5and§6,respectively. Throughoutthepaper,wequoteerrorsatthe90%confidencelevelunlessmen- tioned otherwise. We adopt a distance of 7.2 Mpc to NGC 5055 (Michele & Serra 1997), which is consistent with the distance calculated from its redshift (z =0.001681)ifcosmologicalparametersH0 =70kms−1Mpc−1,Ωm =0.3 andΩΛ =0.7areadopted.Atthisdistance1′correspondstoabout2.1kpc. 2 OBSERVATIONANDDATAREDUCTION NGC 5055 was observed with Chandra with the CCD 0, 1, 2, 3, 6 and 7 of theChandraAdvancedCCDImagingSpectrometer(ACIS)inoperationontwo separateoccasions,whichstartedonAugust27,2001foratotalexposureof28.4 ks,andonApril15,2001forashortdurationof2.4ks,respectively.Theevents weretelemeteredinfaintmodeandthedatawerecollectedwithaframetimeof 3.2s.TheCCD temperaturewassetat−120oC. IntheAugust27observation fromwhichthedataofthisworkwasdrawn,thecenterofgalaxywaspositioned ontheACISS3chip(CCD7)withanoffsetof31′′fromthenominalpointingfor theS3chip,sonearlyalltheemissionofthegalaxywascoveredbytheS3chip. In the analysisthatfollows,we used the CIAO softwareversion2.3to process thedataextractedfromtheS3chiponly.Inordertoapplythelatestcalibration, westartedwiththeLevel-1data.WekepteventswithASCAgrades0,2,3,4and 6,andexcludedbadpixels,badcolumns,andcolumnsadjacenttobadcolumns andnodeboundaries.Inordertoidentifyoccasionalperiodsofhighbackground, weextractedthelightcurveofthesource-freeregionsontheS3chipin2.5–7.0 keVwherethebackgroundflaresareexpectedtobemostvisible.Wefoundthat uptoabout5%ofthetotalexposuretimewasaffectedbyhighbackgroundflares. ⋆E-mail:[email protected] X-rayPointSourcesinNGC5055(M63) 3 Byexcludingthecontaminatedintervalsweobtainedacleanexposureof27.0ks fortheanalysis. 3 X-RAYIMAGE In Figure 1a we plot the Chandra S3 image of NGC 5055 in 0.3–10.0keV in logarithmic scale. The image has been corrected for both exposure and back- ground, and has been smoothed by using a minimum signal-to-noise ratio of 3 and a maximum signal-to-noise ratio of 5 per beam. We find that the X-ray emission from the galaxy is dominated by a large population of X-ray point sources, which contribute about 80% of the total counts of the galaxy in 0.3– 10.0keV.ThediffuseX-rayemissionisnearlysymmetricwithinabout20′′,and isslightlyelongatedineast-westdirectioninouterregions.NodiffuseX-raysis significantlydetectedbeyond≃33′′,whichisapproximatethesizeofthebulge (≃ 35′′;Baggettetal.1998).WefindthatthediffuseX-rayemissionispeaked atRA=13h15m49.3sDEC=+42d01m45.5s(J2000)whereabrightnuclearX-ray pointsourceisdetected.ThepositionoftheX-raypeakalsocoincideswiththe opticalandinfraredcentersofthegalaxytowithin0.5′′.InFigure1bweshow the opticalimage drawnfromthe Digital Sky Survey(DSS) in linear scale, on whichthelocationsofthe43detectedX-raysourcesaremarkedwithcirclesfor comparison(§4.1). 4 X-RAYPOINTSOURCES 4.1 Detections We detected X-Ray point sources on the ACIS S3 image using the CIAO tool celldetectwithasignal-to-noisethresholdof3.Wefirstrestrictedthedetections in0.3–10.0keV,andthencrosscheckedtheresultsin0.5–7.0keV.Wealsohave crosscheckedtheresultsbyusingthewavelet-basedCIAOtoolwavdetectandby visional-examination.OnthewholeS3CCD 46sourcesaredetected,ofwhich 43 sources are located within the 2 effective radii (1 effective radius = 1Re = 1.6′;Thornley1996).Inthisworkwefocusourstudyonthese43sourcesonly. The spatial distribution of the 43 sources show a clear concentration towards thegalaxycenter,inferringthatmostofthemarephysicallyassociatedwiththe galaxy.BasedontheresultsofthedeepChandraobservationsoftheblankfields (Mushotzkyetal.2000),weperformedMonte-Carlosimulationsandfoundthat only few (<5) of the 43 point sources may be unrelated background sources. ∼ By overlaying the positions of these sources on the DSS image (Fig. 1b), we findthat31ofthe43sourcesaredetectedonthediskwithatendencytoreside on the spiral arms. The rest 12 sources are detected in the bulge, of which up toabout1sourcemaybea diskpopulationsourcethatismisclassifiedintothe bulge population due to the project effect. At the X-ray peak a nuclear source isdetected,howeveritdoesnothavethehighestcountrateamongthedetected sources.Welistthepropertiesofthe43sourcesinTable1,wherewesortthem intheorderofincreasingprojecteddistancefromthecenterofthegalaxy. 4.2 TemporalVariabilities Afterremovingtheintervalsofstrongbackgroundflares,weextractedthe0.3– 10.0keVlightcurvesofthedetectedsourcesthateachhasmorethan60counts in total. We calculated the Kolmogoroff-Smirov(K-S) statistic for each of the lightcurvesagainstthe null hypothesisthatthe countrate of the source is tem- porally invariant over the effective exposure time; if the source is temporally 4 Luoetal. invariant,thecumulativefractionofthecountisadiagonalfrom0to1.Wefind that Src 22 (243 counts), Src 35 (600 counts) and Src 38 (102 counts) show significant evidence for temporal variations on the 90% confidence level (Fig. 3). This is not likely to be caused by the variations of the local background, since the K-S test gives negative results in the backgroundvariability. For the centralsource(Src1),thetemporalvariabilityislesssignificantintermsofthe K-Stest,possiblybecauseK-Stestsaremostsensitivearoundthemedianvalue of the independent variable. However, by calculating the variability parameter S =(fmax−fmin)/ σf2max +σf2min =1.1,wherefmaxandfminarethemaxi- q mumandminimumcountrates,respectively,andσ andσ arethecorre- fmax fmin spondingerrors,wefindthatSrc1ismarginallyvariableontimescalesof1∼5 hrduringwhichitscountratechangedbyabout50%. 4.3 HardnessRatios Sincethebackground-correctedcountratesofmostoftheresolvedX-raypoint sources are low, which makes it impossible to carry out spectral analysis for each source, we turned to study the hardness ratios of all the resolved sources that are defined as H21 = (M −S)/(M +S) and H31 = (H −S)/(H + S), where S, M and H are the background-correctedcounts extracted in 0.3– 1.0 keV (S), 1.0–2.0 keV (M) and 2.0–10.0 keV (H), respectively. The same approachhasbeenadoptedinearlierworks(e.g.,Sarazinetal.2000).Welistthe calculatedhardnessratiosandthe1σerrorsincolumn7and8ofTable1,andplot H31againstH21inFigure4.Inthefigureweshowthepredictedhardnessratio distributionsforanabsorbedpower-lawmodelbyadoptingcolumndensitiesof 1.31×1020 cm−2 (the Galactic value; Dickey & Lockman 1990) and 3.93× 1020 cm−2, and photon indices of Γ = 0.0, 1.0, 2.0, 3.0 and 4.0, as well as the hardness ratios for an absorbed blackbodymodel by adopting the Galactic absorptionandtemperaturesofkT =0.5, 0.4, 0.3, 0.2and0.1keV. WefindthatthedistributionofthecolorsissimilartothatofM31(Konget al.2002)andthenearlyface-on,gas-richspiralgalaxyM83(Soria&Wu2003). Mostofthesourceslieinabroaddiagonalbandextendingfrom(H21,H31)= (−1,−1) to (1,1). One source (Src 19) that is located at a moderate distance (1.1′) to the galaxy center has hardness ratios of about (−1,−1) and is thus identifiedasasupersoftsource(SSS).IftheselectioncriterionsofSupperetal. (1997)andKahabka(1999)areapplied,5othersources(Src6,7,9,13and14) canbeidentifiedascandidatesofSSSsaswellsincetheysatisfyH31+σH31 < −1andH21 < 0,orH21+σH21 < −0.8.Ifweslackentheselectionlimitto H21 < 0.5 and H31 < 0.5 (e.g. Swartz et al. 2002), Src 12 and 15 can also be classified as SSS candidates.As is shown in Figure4 the hardnessratiosof thesesupersoftsourcescanapproximatelybedescribedwithanabsorbedblack- body model with the temperatures ranging from about 0.2 to 0.3 keV. Src 31 has a hardness ratio of (1,1), which appears to have been heavily absorbed by a column density significantly larger than the Galactic value. Since Src 31 is locatedfarawayfromthecenterofthegalaxy(d>110′′)anditshardnessratios agreewiththoseexpectedbyanabsorbedpower-lawmodelwithanabsorption of≥ 0.4×1022cm−2 andaphotonindexofΓ ∼ 0,itisprobablyanunrelated backgroundAGN. For comparison,within the 2Re region the measured mean hardness ratios forthetotalX-rayemissionofthegalaxyare(H21,H31)=(−0.28,0.18).For thesameregion,themeanhardnessratiosare(H21,H31)= (−0.14,0.13)for X-rayPointSourcesinNGC5055(M63) 5 alltheresolvedX-raypointsourcesand(−0.46,0.23)fortheunresolveddiffuse emission. 4.4 SpectralAnalysis We first extracted and studied the cumulativespectrum of all the 42 off-center pointsourcesresolvedwithin2Re.Thebackgroundswereextractedfromacare- fully selected annulus around each source. By applying the latest CALDB we have corrected for the charge transfer inefficiency (CTI) and the continuous degradationintheACISquantumefficiency,whichisespeciallysevereatlower energies.To avoid the effectsof calibrationuncertaintiesat lower energiesand instrumentalbackgroundathigherenergieswerestrictedthespectralanalysisto the0.7–7.0keVenergyband.Wefoundthatthecumulativespectrumcannotbe fitted with a single absorbedpower-lawmodel, if the absorptionis fixed at the Galacticvalue.Whentheabsorptionwasallowedtovary,however,theabsorbed power-lawmodelcangiveanacceptablefit(χ2/dof = 152.7/116).Theresult- ingabsorptionandphotonindexare0.14±0.01×1022cm−2and2.05±0.06, respectively.Withtheseparametersthetotalfluxofallthe42off-centersources in 0.3–10.0keV is calculatedto be 7.79×10−13 erg s−1 cm−2. We also have divided the resolved off-centersourcesinto the disk and the bulge populations andstudiedtheircumulativespectrain0.7–7.0keV.Thecumulativespectrumof thediskpopulationcanbemarginallyfittedwithanabsorbedpower-lawmodel withanabsorptionof0.27±0.03×1022cm−2andaphotonindexof2.45±0.08 (χ2/dof = 138.9/112).The spectrumof bulgepopulation,on the otherhand, can be well fitted with a model that consists of a power-law componentand a blackbodycomponent,bothsubjectedtoacommonabsorptionthatisconsistent with the Galactic value (χ2/dof = 60.1/55). The obtained photon index and temperatureareΓ=1.36±0.13andkT =0.12±0.01keV,respectively. By excluding all the detected point sources we examined the spectrum of the diffuse emissions extracted in < 2Re that includes the contributions from boththeunresolvedpointsourcesandtheinter-stellarmedium(ISM).Theback- ground was extracted in a source-free boundary region on the S3 chip as far awayaspossiblefromthegalaxy.Wefirstattemptedtofitthespectrumwithan absorbed power-lawor an absorbedMEKAL model, but neither of them gives anacceptablefitto thedata,unlesstheabsorptionisallowedto increaseto un- reasonable,physicallymeaninglessvalues.Thusweattemptedtoapplyamodel thatconsistsofaMEKALcomponenttorepresenttheemissionofthehotISM, andapower-lawcomponenttorepresentthecontributionofX-raybinaries,with both components subjected to a common absorption. Since the abundance of theMEKALcomponentispoorlyconstrained,wetentativelyfixeditto0.1Z⊙, which is obtained by Tyler et al. (2004) for the central region of NGC 5055. WefoundthatwhentheabsorptionisfixedtotheGalacticvalue,themodelpro- videsuswithanacceptablefit(χ2/dof = 63.4/51),withagastemperatureof 0.30±0.02keVandaphotonindexof2.47±0.26.Thetotalfluxoftheemis- sionin0.3–10.0keVis7.24×10−13ergs−1cm−2,ofwhichabout54%canbe ascribedtothepower-lawcomponent. Of the 43 X-ray sources resolved within 2Re, 10 sources (Src 1, 5, 8, 9, 16,18,22,25,27and35)haveatotalcountslargerthan100.Weextractedthe individual spectra of these sources and the corresponding background spectra inannularregionsadjacenttowherethesourcespectrawereextracted.Wefitted eachspectrumwithanabsorbedpower-lawmodeland/oranabsorbedmulticolor diskblackbodymodel(DBB),andlisttheresultsinTable2.Thespectrumofthe centersource(Src1)iswellfittedbyanabsorbedpower-lawmodelwithaphoton 6 Luoetal. indexof1.61±0.15,whichistypicalforthoseofsupermassiveblackholesinac- tivegalaxies.The0.3–10.0keVluminosityofSrc1correctedfortheabsorption is calculated to be 3.16×1038 erg s−1, which is lower than that of most low- luminosity AGNs. The spectrum of the brightest source Src 35, which showed significanttemporalvariationsduringtheobservation(§4.2),canbefittedwithan absorbedDBBmodelwithaninnerdisktemperatureofkTin =0.49±0.04keV. Thissourceisacandidateultra-luminousX-raysource(ULX)sinceits0.3–10.0 keVluminosityis1.25×1039ergs−1. AccordingtothepreviousstudiesoftheSSSsinspiralgalaxies(e.g.,M101, Pence et al. 2001; M31, Kong et al. 2002; M83, Soria & Wu 2003), SSSs are probably white dwarfs fueled by accretion from their low-mass companions. Indeedwe find thatthe spectrumof the SSS candidateSrc 9 can be fitted with anabsorbedDBBmodelwiththeinnertemperatureof0.15±0.01keV,which isconsistentwiththatofanaccretingwhitedwarf. 4.5 X-RayLuminosityFunctionsoftheResolvedOff-CenterPointSources AllOff-CenterSourcesDetectedwithin2Re Assuming that all the off-center X-ray point sources resolved within 2Re are located at the distance of NGC 5055, we calculated their X-ray luminosi- ties in 0.3–10.0keV using the best-fit spectral parametersfor their cumulative spectrum. The conversion factor of the counts is 2.13 × 1036 erg cts−1, and the resultingluminositiesrange from2.1×1037 to 1.25×1039 erg s−1. With theseweconstructtheXLFandillustrateitinFigure5a.Sincethedetectionof thepointsourcesisnotcompleteatthefaintendoftheluminosityfunction,by adoptingamethodsimilartothatutilizedin,e.g.,KimandFabbiano(2004)and Xuetal.(2005)weranMonte-Carlosimulationstocreatefakepointsourceson theS3imageofNGC5055in0.3–10.0keV.Inthesimulationswecreatedfake sourcesby using the MARX package(Wise et al. 1997),and assumed that the radial distribution of the fake sources at any given luminosity follows the r1/4 law(deVaucouleurs1948).Atagivenluminosity,wedeterminedhowmanyof thefakesourcescanbedetectedwiththesametechniqueusedin§4.1.Insucha waywecorrectedboththeobservedXLFandthebackgroundfortheunresolved sources.ThecorrectedXLFarealsoshowninFigure5b. WefittedboththeuncorrectedandcorrectedcumulativeXLFswiththesoft- ware Sherpa by using either a single power-law profile or a brokenpower-law profile N(>L)=N0(cid:26)((LLb/)Lα3h8−)α−lα(lL/L38)−αh LL><LLbb , whereL/L38isthe0.3–10.0keVluminosityinunitsof1038ergs−1,andαl and α aretheslopeindicesforthelowerandhigherluminosityends,respectively. h We find that for the uncorrected XLF, the fittings with the single power-law modelcanbeimmediatelyrejected(χ2/dof = 150.2/21).Itoverestimatesthe dataatthehighluminositiesandunderestimatesthedataatthelowluminosities. The use of the broken power-law model, on the other hand, can significantly improvethefittingsandprovideuswithanacceptablefit(χ2/dof = 15.8/19). Thebest-fitparametersatthe90%confidencelevelareL = 2.53+0.56×1038 b −0.45 erg s−1, α = 0.61+0.02 and α = 1.96+0.58. For the XLF corrected for the l −0.03 h −0.18 effectofincompletenessatthefaintendoftheXLF,thesinglepower-lawmodel also cannot give an acceptable fit (χ2/dof = 125.8/22), while the broken power-law model can improve the fittings significantly (χ2/dof = 23.1/20) withthebest-fitparametersL = 3.11+0.37×1038 ergs−1,α = 0.71±0.05 b −0.48 l X-rayPointSourcesinNGC5055(M63) 7 andα =2.36+0.54. h −0.43 BulgeandDiskPopulations We studied the XLFs of the bulge and disk population sources (Fig. 5) and found that the single power-law model is inadequate to describe both the uncorrected XLFs of the bulge population (χ2/dof = 68.9/9) and the disk population(χ2/dof = 30.3/19).Thebrokenpower-lawmodel,however,gives a good fit to the data with L = 1.68+0.12 ×1038 erg s−1, α = 0.31±0.12 b −0.22 l and α = 3.95+1.44 for the bulge population (χ2/dof = 7.4/7), and h −1.19 L = 3.11+0.37 ×1038 erg s−1, α = 0.71± 0.05 and α = 2.36+0.54 for b −0.48 l h −0.43 the disk population(χ2/dof = 23.1/20).We then correctedthe XLFs for the incompletenessat the low energiesusing the method as is described above for alltheresolvedoff-centersources.Forthebulgepopulation,abrokenpower-law is still needed to describe the XLF with L = 1.57+0.21 × 1038 erg s−1, b −0.20 α = 0.38+0.20 and α = 2.28+1.30 (χ2/dof = 7.4/7). The corrected XLF l −0.23 h −0.65 of the disk populationis foundto be nicely consistentwith a single power-law modelwithaslopeofα=0.93+0.07(χ2/dof =16.3/19). −0.06 WehavecrosscheckedourresultsontheXLFprofilesofalltheresolvedoff- centersourcesanddiskpopulationbyexcludingSrc35,thebrightestsourcethat maybiasthefittings.Wefoundthatwithintheerrorsthebest-fitparametersare consistentwiththoseobtainedwithSrc35included. 5 DISCUSSION Wecalculatedthe0.3–10.0keVluminositiesof43X-raypointsourcesdetected within 2Re of NGC 5055 and found that they span a wide range from about 2.1×1037 ergs−1 to 1.25×1039 ergs−1, whichis typicalforspiralgalaxies (M81;Tennantetal.2001,NGC1637;Immleretal.2003)andearly-typegalax- ies(Xuetal.2005andreferencestherein)atsimilardistances.Aftercompensat- ingfortheincompletenessatthelowluminosityend,wefindthatthecorrected XLFofthebulgepopulationiswellfittedwithabrokenpower-lawmodel,while theprofileofthediskpopulation’sXLFsatisfiesasinglepower-lawdistribution. Thediskpopulationissignificantlyricheratthehigh-luminosityend(>2×1038 ∼ erg s−1) than the bulge population, inferring that the star formation history of the bulge is distinct from that of the disk. In other words, the disk may have undergonerecent,strongstarburststhatsignificantlyincreasedtheHMXBpop- ulation, although ongoing starbursts are also observed in the nuclear region of NGC5055.QuitesimilarphenomenonhasbeenfoundinM81(alsoidentifiedas a LINERor Sy1.8)byTennantetal. (2001),who reportedthatthe XLFof the bulgepopulationexhibitsabreakat∼4×1037ergs−1,andtheXLFofthedisk populationcanbefittedwithasinglepower-law. DifferentpatternsofthespatialvariationoftheXLFprofilesfromthebulge tothediskareobservedinotherspiralgalaxies.InM83,aSAB(s)cgalaxythat hostsastarburstnucleus(Soira&Wu2003),theprofileofthebulgeXLFiscon- sistentwithasinglepower-lawwithaslopeof0.8,whileabreakappearsonthe XLFofthediskpopulationatabout8×1037ergs−1.Thismightsuggestthat,un- likeinNGC5055andM81,thereisnostrongstarburstsinM83onthediskinthe recentpast,andtheHMXBsdominatethesourcepopulationonlyinthenuclear starburstregions,ratherthanovertheentiredisk.InM31Priminietal.(1993), Shireyetal.(2001),Kaaret(2002)andKongetal.(2002)foundthatthecumula- tiveXLFofallthedetectedpointsourceshasadistinctbreakat2−3×1037erg s−1,aslopeof1.36±0.33forthehighluminosityendandaslopeof0.47±0.09 forthelowluminosityend.Kongetal.(2002)alsostudiedthecumulativeXLFs 8 Luoetal. ofthepointsourcesintheinnerbulge,outerbulgeanddiskregions.Theyfound thatthereisaspatialvariationintheXLFprofiles;boththebreakluminosityand theslopeofthecumulativeXLFincreaseoutwardsmonotonouslyfromtheinner bulge,wheretheLMXBs dominatethe X-rayemissionofpointsources,to the disk.InafewotherspiralgalaxieswheretheXLFshavebeenstudiedindetail, however,the reportofa breakon theXLF isnotavailablein literatures.These includesM101(Penceetal.2001),IC342(Baueretal.2003;Kong2003),NGC 891(Templeetal.2005),NGC1637(Immleretal.2003)andM51(Terashima &Wilson2004),forwhichtheslopesoftheXLFsrangefromabout0.5toabout 1. ThediversityoftheXLFprofilesoftheX-raysourcesinspiralgalaxiesin- dicatesthatthestarformationandevolutionhistorymaybemorecomplexthan wehaveexpected,sothatfurthercarefulmulti-bandinvestigationsareneeded.In addition,wesuggestthat,sincetypicallyonly50-150X-raypointsourcesarede- tectedpergalaxy,theuncertaintyintroducedbythesmallnumberstatisticsmay biasourconclusionsontheXLFprofiletoacertainextent.InXuetal.(2005), byperformingMonte-Carlosimulationsweshowedthatevenifthereisanuni- versalbreakonthe XLFs of early-typegalaxies,the statistical errorsdefinitely precludeus from measuringit correctly.The same result can be applied to the measurementsoftheXLFprofilesofspiralgalaxies. 6 SUMMARY Wedetectedatotalof43X-raypointsources(12inthebulgeand31onthedisk) withinthe2effectiveradiiofNGC5055,whose0.3–10.0keVluminositiesrange fromafew1037ergs−1toover1039ergs−1.Aftercompensatingfortheincom- pletenessatthelowluminosityend,thecorrectedXLFofthe bulgepopulation iswellfittedwithabrokenpower-lawmodel(L = 1.57+0.21×1038 ergs−1), b −0.20 while the XLF of the disk population satisfies a single power-law distribution (α=0.93+0.07).Thediskpopulationissignificantlyricherat>2×1038ergs−1 −0.06 ∼ thanthebulgepopulation,inferringthatthediskmayhaveundergonerelatively recent, strong starbursts that significantly increased the HMXB population,al- thoughongoingstarburstsarealsoobservedinthenuclearregion.Thisissimilar towhathasbeenfoundinM81.Inmostotherspiralgalaxies,however,different patternsofthespatialvariationoftheXLFprofilesfromthebulgetothediskare observed,indicatingthatthe star formationandevolutionhistory maybe more complexthanwehaveexpected. Acknowledgements This work was supported by the National Science Foundation of China (Grant No. 10273009 and 10233040), Shanghai Key ProjectsinBasicResearchNo.04JC14079. References BaggettW.E.,BaggettS.M.,AndersonK.S.J.1998,AJ,116,1626 BauerF.E.,BrandtW.N.,LehmerB.2003,AJ,126,2797 deVaucouleursG.1948,Ann.d’Astrophys.,11,247 DickeyJ.M.,LockmanF.J.1990,ARA&A,28,215 ElmegreenD.M.,ElmegreenB.G.1987,ApJ,314,3 Garcia-GomezC.,AthanassoulaE.1991,A&AS,89,159 ImmlerS.,WangQ.D.,LeonardD.C.etal.2003,ApJ,595,727 KaaretP.2002,ApJ,578,114 X-rayPointSourcesinNGC5055(M63) 9 KahabkaP.1999,A&A,344,459 KahabkaP.2002,A&A,388,100 KimD.-W.,FabbianoG.2004,ApJ,611,846 KongA.K.H.2003,MNRAS,346,265 KongA.K.H.,GarciaM.R.,PriminiF.A.etal.2002,ApJ,577,738 LeithererC.,LiI.-H.,CalzettiD.etal.2002,ApJS,140,303 MaozD.,FilippenkoA.V.,HoL.C.etal.1996,ApJS,107,215 MaozD.,KoratkarA.,ShieldsJ.C.etal.1998,AJ,116,55 MicheleD.V.,SerraR.1997,Met,3,26 MushotzkyR.F.,CowieL.L.,BargerA.J.etal.2000,Nature,404,459 PenceW.D.,SnowdenS.L.,MukaiK.etal.2001,ApJ,561,189 PriminiF.A.,FormanW.,JonesC.1993,ApJ,410,615 SarazinC.L.,IrwinJ.A.,BregmanJ.N.2000,ApJ,544,L101 ShireyR.,SoriaR.,BorozdinK.etal.2001,A&A,365,L195 SoriaR.,KongA.K.H.2002,ApJ,572,L33 SoriaR.,WuK.2003,A&A,410,53 SupperR.,HasingerG.,PietschW.etal.1997,A&A,317,328 SwartzD.A.,GhoshK.K.,SuleimanovV.etal.2002,ApJ,574,382 TempleR.F.,RaychaudhuryS.,StevensI.R.2005,MNRAS,362,581 TennantA.F.,WuK.,GhoshK.K.2001,ApJ,549,L43 TerashimaY.,WilsonA.S.2004,ApJ,601,735 ThornleyM.D.1996,ApJ,469,L45 TylerK.,QuillenA.C.,LaPageA.etal.2004,ApJ,610,213 WiseM.W.,HuenemoerderD.P.,DavisJ.E.1997,ASPC,125,477 XuY.-H.,XuH.-G.,ZhangZ.-L.etal.2005,ApJ,631,809 ThismanuscriptwaspreparedwiththeChJAALATEXmacrov1.2. 10 Luoetal. 30.0 (a) 03:00.0 30.0 Buldge 17 20 16 11 J2000) 02:00.021 13 98 3 2 14 12 19 22 Dec. ( 30.0 14 6 5 710 15 18 01:00.0 28 24 26 23 30.0 58.0 54.0 13:15:50.0 46.0 42.0 R.A. (J2000) Fig.1 (a):X-rayimageofthe central3.6′×3.6′ regionof NGC 5055 in 0.3–10 keV in logarithmic scale, which has been smoothed with a minimum significance of 3 and a maximum significance of 5, and has beencorrectedforbothexposureandbackground.(b):DSSblueimage with the field of view of (a) and the bulge marked with a box and a circle,respectively.OnbothimagesthedetectedX-raypointsourcesare markedwithsmallcircles. Fig.2 Background-correctedlightcurvesofSrc22,Src35andSrc38.