ebook img

Wood Fracture Characterization PDF

150 Pages·2018·17.941 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wood Fracture Characterization

Wood Fracture Characterisation Wood Fracture Characterisation Marcelo F. S. F. de Moura and Nuno Dourado MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB® software. CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-0-8153-6471-9 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copy- right holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Preface ............................................................................................................................................vii Acknowledgements .......................................................................................................................ix Authors ............................................................................................................................................xi 1 Introduction .............................................................................................................................1 1.1 Global Overview and Applications ............................................................................1 1.2 Wood – How Does It Form? .........................................................................................5 1.3 Wood Constituents and Micro-Structure ..................................................................7 1.4 Wood at the Mesoscale ...............................................................................................10 References ...............................................................................................................................14 2 Wood Mechanical Behaviour .............................................................................................15 2.1 Elastic and Strength Properties ................................................................................15 2.1.1 Young’s Moduli and Normal Strengths .....................................................16 2.1.2 Poisson’s Ratios ..............................................................................................20 2.1.3 Shear Moduli and Strengths ........................................................................20 2.2 Strength Failure Criteria ............................................................................................26 2.3 Fracture Mechanics Based Approaches ...................................................................29 2.3.1 Linear Elastic Fracture Mechanics .............................................................29 2.3.2 Cohesive Zone Models .................................................................................32 References ...............................................................................................................................35 3 Mode I Fracture Characterisation .....................................................................................37 3.1 Double Cantilever Beam ............................................................................................37 3.1.1 Test Description..............................................................................................37 3.1.2 Classical Data Reduction Schemes ..............................................................37 3.1.3 Modified Experimental Compliance Method (MECM) ...........................39 3.1.4 Compliance-Based Beam Method (CBBM) ................................................40 3.1.5 Numerical Validation ....................................................................................42 3.1.6 Experimental and Numerical Results .........................................................45 3.2 Single-Edge-Notched Beam Loaded in Three-Point-Bending .............................47 3.2.1 Test Description..............................................................................................47 3.2.2 Data Reduction Scheme Based on Equivalent LEFM ...............................49 3.2.3 Compliance-Based Beam Method ...............................................................51 3.2.4 Numerical Validation of the Compliance-Based Beam Method .............53 3.2.5 Experimental and Numerical Results .........................................................55 3.3 Tapered Double Cantilever Beam ............................................................................55 3.3.1 Test Description..............................................................................................55 3.3.2 Data Reduction Scheme ................................................................................55 3.3.3 Compliance-Based Beam Method ..............................................................58 3.3.4 Numerical Validation ....................................................................................60 3.3.5 Experimental and Numerical Results .........................................................61 3.4 Compact Tension Test ................................................................................................62 3.5 Conclusions of Mode I Fracture Tests ......................................................................64 References ...............................................................................................................................64 v vi Contents 4 Mode II Fracture Characterisation ....................................................................................67 4.1 End-Notched Flexure Test ........................................................................................68 4.1.1 Test Description..............................................................................................68 4.1.2 Classical Data Reduction Schemes ..............................................................69 4.1.3 Compliance-Based Beam Method ..............................................................70 4.1.4 Experimental and Numerical Results .........................................................72 4.2 End-Loaded Split Test (ELS) ......................................................................................74 4.2.1 Test Description..............................................................................................75 4.2.2 Classical Data Reduction Schemes ..............................................................76 4.2.3 Compliance-Based Beam Method ...............................................................77 4.2.4 Experimental and Numerical Results .........................................................78 4.3 Four End-Notched Flexure Test ...............................................................................79 4.3.1 Test Description..............................................................................................81 4.3.2 Compliance Calibration Method ................................................................81 4.3.3 Compliance-Based Beam Method ..............................................................82 4.3.4 Experimental and Numerical Results .........................................................84 4.4 Conclusions of Mode II Fracture Tests .....................................................................87 References ...............................................................................................................................87 5 Mixed-Mode I + II Fracture Characterisation .................................................................89 5.1 Single-Leg Bending Test ............................................................................................90 5.1.1 Test Description..............................................................................................90 5.1.2 Compliance-Based Beam Method ...............................................................91 5.1.3 Numerical Analysis .......................................................................................91 5.1.4 Experimental Results ....................................................................................93 5.2 End Load Shear-Mixed Mode Test ..........................................................................93 5.2.1 Test Description..............................................................................................93 5.2.2 Compliance-Based Beam Method ..............................................................94 5.2.3 Numerical Analysis .......................................................................................95 5.2.4 Experimental Results ....................................................................................96 5.3 Mixed-Mode Bending Test ........................................................................................97 5.3.1 Test Description..............................................................................................97 5.3.2 Experimental Analysis and Results ............................................................99 5.3.3 Numerical Validation ..................................................................................102 5.4 Conclusions of Mixed-Mode I + II Fracture Tests ................................................103 References .............................................................................................................................103 6 Structural Applications – Case Studies .........................................................................105 6.1 Wood Bonded Joints .................................................................................................105 6.1.1 Repaired Beam under Tensile Loading ....................................................105 6.1.2 Repaired Beam under Bending Loading ..................................................109 6.1.3 Reinforcement of Wood Structures ...........................................................113 6.2 Wood Dowel Joints ...................................................................................................117 6.2.1 Steel–Wood–Steel Connection ...................................................................117 6.2.2 Wood–Wood Joint ........................................................................................122 6.3 Conclusions of Structural Applications .................................................................129 References .............................................................................................................................130 Index .............................................................................................................................................133 Preface Wood is increasingly used in structural applications. In fact, the interest in applying renewable resources in structural design is growing due to ecological and environmental reasons, and energy shortages. Solid wood is generally used in frames, buildings, truss roof structures in buildings, bridges, towers, railroad infrastructures and in many other applications. Damage and failure behaviour of wood members in tensile, compressive or shear loading are extremely important to account in wooden structures subjected to high working stresses. Structural details involving wood member’s connections also require special attention for a safe design. Effectively, damage under tensile, compressive or shear loading can occur at the joints or within the lumber of many members. The criteria cur- rently used in wood structural design are based on stress or strain analyses. However, many structural applications of wood involve discontinuities and singularities such as notches or holes, which lead to important stress concentration effects. Additionally, wood as a natural and biological material presents drastic variations in its inner structure as a result of internal defects such as knots, variation of grain orientation, reaction wood and others that contribute to a considerable source of variability at several levels. The conse- quence of these aspects is the consideration in the actual design codes of several and high safety factors in the design of wood structures. To overcome these drawbacks and limitations, a promising line of research consists in employing fracture mechanics concepts to wood design. Such methodology can contrib- ute significantly to a better understanding and more reliable design methods concern- ing the project of wood structural applications. Therefore, a comprehensive description of the fundaments on fracture mechanics is presented in this book, as well as the neces- sary extensions that account for wood specificities. In this context, a wide description and development of several fracture tests appropriate for wood fracture characterisation under different loading modes is the main focus of this book. The described work includes new fracture tests applied to wood, new data reduction schemes and numerical models based on cohesive zone analysis that are frequently used to validate the proposed experimental- based methodologies. In addition, several structural details involving connections of wood members have been analysed for safe design in the last chapter, using the experimental and numerical tools described throughout the book. In summary, this book addresses the following main targets: • Proposal of accurate methods for the design of wood members in structures; • Development of approaches that allow decreasing the material consumption in structural applications; • Enhancement of the attractiveness of wood for structural application purposes; • Stimulation of the building sector to employ wood as a competitive construction material, that allows boosting the forestry and woodworking industry sectors; • Valuable contribution towards ecological and environmental issues. The main goal of this book is to stimulate the readers to use the theories and methods described herein as tools for safe, ecological and efficient wood structural design. vii viii Preface MATLAB® is a registered trademark of The MathWorks, Inc. For product information, please contact: The MathWorks, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 USA Tel: 508-647-7000 Fax: 508-647-7001 E-mail: [email protected] Web: www.mathworks.com Acknowledgements The authors thank the Portuguese Foundation for Science and Technology for supporting the work here presented through the projects ‘Design of wood-bonded joints’ (POCTI/ EME/45573/2002), ‘Design of wood and wood-bonded joints under mixed-mode load- ing’ (POCI/EME/56567/2004) and ‘Repair of wood structures using artificial composites’ (PTDC/EME-PME/64839/2006). The authors also thank Professor José Joaquim Lopes Morais from the University of Trás-os-Montes e Alto Douro for his advices, ideas and participation in the generality of the topics. All the students participating in the projects are also recognised. Professors Stéphane Morel and Gérard Valentin from the University of Bordeaux are also acknowl- edged. The authors would like to highlight and express their gratitude to the students Manuel António Lima da Silva, Jorge Marcelo Quintas de Oliveira and João Pedro da Costa Reis for their good spirit and valuable experimental and numerical work that contributed decisively to the presented work. The authors are also grateful to Professor José Lousada for his courtesy in providing the wood histological images. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.