ebook img

What Is Calculus?: From Simple Algebra to Deep Analysis PDF

373 Pages·2016·3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview What Is Calculus?: From Simple Algebra to Deep Analysis

9448_9789814644471_TP.indd 1 3/8/15 10:19 am May2,2013 14:6 BC:8831-ProbabilityandStatisticalTheory PST˙ws TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk World Scientific 9448_9789814644471_TP.indd 2 3/8/15 10:19 am Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Range, R. Michael. What is calculus? : from simple algebra to deep analysis / by R. Michael Range (State University of New York at Albany, USA). pages cm Includes index. ISBN 978-9814644471 (hardcover : alk. paper) -- ISBN 978-9814644488 (pbk. : alk. paper) 1. Calculus--Textbooks. I. Title. QA303.2.R36 2015 515--dc23 2015019347 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2016 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. Printed in Singapore YingOi - What is Calculus.indd 1 25/5/2015 9:19:43 AM June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pagev To my grandchildren Kareem, Kayan,Joshua, and Alexander and all other students who want to learn and understand calculus v May2,2013 14:6 BC:8831-ProbabilityandStatisticalTheory PST˙ws TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pagevii Contents Preface xv Notes for Instructors xxiii Prelude to Calculus 1 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Tangents to Circles . . . . . . . . . . . . . . . . . . . . . . 2 2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 8 3 Tangents to Parabolas . . . . . . . . . . . . . . . . . . . . 8 3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 10 4 Motion with Variable Speed . . . . . . . . . . . . . . . . . 11 4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 15 5 Tangents to Graphs of Polynomials . . . . . . . . . . . . . 16 5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 21 6 Rules for Differentiation . . . . . . . . . . . . . . . . . . . 21 6.1 Elementary Rules . . . . . . . . . . . . . . . . . . 22 6.2 Inverse Function Rule . . . . . . . . . . . . . . . 24 6.3 Product Rule . . . . . . . . . . . . . . . . . . . . . 26 6.4 Quotient Rule . . . . . . . . . . . . . . . . . . . . 28 6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 30 7 More General Algebraic Functions . . . . . . . . . . . . . 31 7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 35 8 Beyond Algebraic Functions . . . . . . . . . . . . . . . . . 35 8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 42 I. The Cast: Functions of a Real Variable 43 I.1 Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 43 vii June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pageviii viii What is Calculus? From Simple Algebra toDeep Analysis I.1.1 Rational Numbers . . . . . . . . . . . . . . . . . . 43 I.1.2 Order Properties . . . . . . . . . . . . . . . . . . . 46 I.1.3 Irrational Numbers . . . . . . . . . . . . . . . . . 47 I.1.4 Completeness of the Real Numbers . . . . . . . . 50 I.1.5 Intervals and Other Properties of R . . . . . . . . 53 I.1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . 58 I.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 I.2.1 Functions of Real Variables . . . . . . . . . . . . . 60 I.2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . 61 I.2.3 Some Simple Examples . . . . . . . . . . . . . . . 65 I.2.4 Linear Functions, Lines, and Slopes . . . . . . . . 66 I.2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 70 I.3 Simple Periodic Functions . . . . . . . . . . . . . . . . . . 71 I.3.1 The Basic Trigonometric Functions . . . . . . . . 72 I.3.2 Radian Measure . . . . . . . . . . . . . . . . . . . 74 I.3.3 Simple Trigonometric Identities . . . . . . . . . . 75 I.3.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . 77 I.3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 78 I.4 Exponential Functions . . . . . . . . . . . . . . . . . . . . 79 I.4.1 Compound Interest . . . . . . . . . . . . . . . . . 79 I.4.2 The Functional Equation . . . . . . . . . . . . . . 80 I.4.3 Definition of Exponential Functions for Rational Numbers . . . . . . . . . . . . . . . . . . . . . . . 81 I.4.4 Properties of Exponential Functions . . . . . . . . 83 I.4.5 Exponential Functions for Real Numbers . . . . . 86 I.4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . 88 I.5 Natural Operations on Functions . . . . . . . . . . . . . . 89 I.5.1 Compositions . . . . . . . . . . . . . . . . . . . . . 89 I.5.2 Inverse Functions . . . . . . . . . . . . . . . . . . 91 I.5.3 Logarithm Functions . . . . . . . . . . . . . . . . 93 I.5.4 Inverting Functions on Smaller Domains . . . . . 97 I.5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 99 I.6 Algebraic Operations and Functions . . . . . . . . . . . . 101 I.6.1 Sums and Products of Functions . . . . . . . . . . 101 I.6.2 Simple Algebraic Functions . . . . . . . . . . . . . 102 I.6.3 Local Boundedness of Algebraic Functions . . . . 104 I.6.4 Global Boundedness . . . . . . . . . . . . . . . . . 107 I.6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 108 June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pageix Contents ix II. Derivatives: How to Measure Change 111 II.1 Algebraic Derivatives by Approximation. . . . . . . . . . 112 II.1.1 From Factorization to Average Rates of Change . 112 II.1.2 From Average to Instantaneous Rates of Change . . . . . . . . . . . . . . . . . . . . . . . 120 II.1.3 Approximation of Algebraic Derivatives . . . . . 122 II.1.4 Exercises. . . . . . . . . . . . . . . . . . . . . . . 126 II.2 Derivatives of Exponential Functions . . . . . . . . . . . 127 II.2.1 Tangents for y =2x . . . . . . . . . . . . . . . . . 128 II.2.2 The Tangent to y =2x at x=0 . . . . . . . . . . 130 II.2.3 Other Exponential Functions . . . . . . . . . . . 136 II.2.4 The “Natural” Exponential Function . . . . . . . 137 II.2.5 The Natural Logarithm . . . . . . . . . . . . . . 139 II.2.6 The Derivative of lnx . . . . . . . . . . . . . . . 140 II.2.7 The Differential Equation of Exponential Functions . . . . . . . . . . . . . . . . . . . . . . 141 II.2.8 Exercises. . . . . . . . . . . . . . . . . . . . . . . 143 II.3 Differentiability and Local Linear Approximation . . . . 144 II.3.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . 144 II.3.2 Continuous Functions . . . . . . . . . . . . . . . 147 II.3.3 Differentiable Functions . . . . . . . . . . . . . . 150 II.3.4 Local Linear Approximation . . . . . . . . . . . . 152 II.3.5 Exercises. . . . . . . . . . . . . . . . . . . . . . . 157 II.4 Properties of Continuous Functions . . . . . . . . . . . . 158 II.4.1 Rules for Limits . . . . . . . . . . . . . . . . . . . 158 II.4.2 Rules for Continuous Functions . . . . . . . . . . 160 II.4.3 The Intermediate Value Theorem . . . . . . . . . 161 II.4.4 Continuity and Boundedness . . . . . . . . . . . 162 II.4.5 Exercises. . . . . . . . . . . . . . . . . . . . . . . 164 II.5 Derivatives of Trigonometric Functions . . . . . . . . . . 165 II.5.1 Continuity of sine and cosine Functions . . . . . 165 II.5.2 The Derivative of sint at t=0 . . . . . . . . . . 166 II.5.3 The Derivative of sint . . . . . . . . . . . . . . . 169 II.5.4 The cosine Function . . . . . . . . . . . . . . . . 172 II.5.5 A Differential Equation for sine and cosine . . . 172 II.5.6 Exercises. . . . . . . . . . . . . . . . . . . . . . . 173 II.6 Simple Differentiation Rules . . . . . . . . . . . . . . . . 175 II.6.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . 175

Description:
This unique book provides a new and well-motivated introduction to calculus and analysis, historically significant fundamental areas of mathematics that are widely used in many disciplines. It begins with familiar elementary high school geometry and algebra, and develops important concepts such as t
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.