Table Of Content9448_9789814644471_TP.indd 1 3/8/15 10:19 am
May2,2013 14:6 BC:8831-ProbabilityandStatisticalTheory PST˙ws
TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk
World Scientific
9448_9789814644471_TP.indd 2 3/8/15 10:19 am
Published by
World Scientific Publishing Co. Pte. Ltd.
5 Toh Tuck Link, Singapore 596224
USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601
UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE
Library of Congress Cataloging-in-Publication Data
Range, R. Michael.
What is calculus? : from simple algebra to deep analysis / by R. Michael Range (State University
of New York at Albany, USA).
pages cm
Includes index.
ISBN 978-9814644471 (hardcover : alk. paper) -- ISBN 978-9814644488 (pbk. : alk. paper)
1. Calculus--Textbooks. I. Title.
QA303.2.R36 2015
515--dc23
2015019347
British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.
Copyright © 2016 by World Scientific Publishing Co. Pte. Ltd.
All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the publisher.
For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy
is not required from the publisher.
Printed in Singapore
YingOi - What is Calculus.indd 1 25/5/2015 9:19:43 AM
June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pagev
To my grandchildren
Kareem, Kayan,Joshua, and Alexander
and all other students
who want to learn and understand calculus
v
May2,2013 14:6 BC:8831-ProbabilityandStatisticalTheory PST˙ws
TThhiiss ppaaggee iinntteennttiioonnaallllyy lleefftt bbllaannkk
June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pagevii
Contents
Preface xv
Notes for Instructors xxiii
Prelude to Calculus 1
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Tangents to Circles . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 8
3 Tangents to Parabolas . . . . . . . . . . . . . . . . . . . . 8
3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 10
4 Motion with Variable Speed . . . . . . . . . . . . . . . . . 11
4.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 15
5 Tangents to Graphs of Polynomials . . . . . . . . . . . . . 16
5.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 21
6 Rules for Differentiation . . . . . . . . . . . . . . . . . . . 21
6.1 Elementary Rules . . . . . . . . . . . . . . . . . . 22
6.2 Inverse Function Rule . . . . . . . . . . . . . . . 24
6.3 Product Rule . . . . . . . . . . . . . . . . . . . . . 26
6.4 Quotient Rule . . . . . . . . . . . . . . . . . . . . 28
6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 30
7 More General Algebraic Functions . . . . . . . . . . . . . 31
7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 35
8 Beyond Algebraic Functions . . . . . . . . . . . . . . . . . 35
8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . 42
I. The Cast: Functions of a Real Variable 43
I.1 Real Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 43
vii
June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pageviii
viii What is Calculus? From Simple Algebra toDeep Analysis
I.1.1 Rational Numbers . . . . . . . . . . . . . . . . . . 43
I.1.2 Order Properties . . . . . . . . . . . . . . . . . . . 46
I.1.3 Irrational Numbers . . . . . . . . . . . . . . . . . 47
I.1.4 Completeness of the Real Numbers . . . . . . . . 50
I.1.5 Intervals and Other Properties of R . . . . . . . . 53
I.1.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . 58
I.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I.2.1 Functions of Real Variables . . . . . . . . . . . . . 60
I.2.2 Graphs . . . . . . . . . . . . . . . . . . . . . . . . 61
I.2.3 Some Simple Examples . . . . . . . . . . . . . . . 65
I.2.4 Linear Functions, Lines, and Slopes . . . . . . . . 66
I.2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 70
I.3 Simple Periodic Functions . . . . . . . . . . . . . . . . . . 71
I.3.1 The Basic Trigonometric Functions . . . . . . . . 72
I.3.2 Radian Measure . . . . . . . . . . . . . . . . . . . 74
I.3.3 Simple Trigonometric Identities . . . . . . . . . . 75
I.3.4 Graphs . . . . . . . . . . . . . . . . . . . . . . . . 77
I.3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 78
I.4 Exponential Functions . . . . . . . . . . . . . . . . . . . . 79
I.4.1 Compound Interest . . . . . . . . . . . . . . . . . 79
I.4.2 The Functional Equation . . . . . . . . . . . . . . 80
I.4.3 Definition of Exponential Functions for Rational
Numbers . . . . . . . . . . . . . . . . . . . . . . . 81
I.4.4 Properties of Exponential Functions . . . . . . . . 83
I.4.5 Exponential Functions for Real Numbers . . . . . 86
I.4.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . 88
I.5 Natural Operations on Functions . . . . . . . . . . . . . . 89
I.5.1 Compositions . . . . . . . . . . . . . . . . . . . . . 89
I.5.2 Inverse Functions . . . . . . . . . . . . . . . . . . 91
I.5.3 Logarithm Functions . . . . . . . . . . . . . . . . 93
I.5.4 Inverting Functions on Smaller Domains . . . . . 97
I.5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 99
I.6 Algebraic Operations and Functions . . . . . . . . . . . . 101
I.6.1 Sums and Products of Functions . . . . . . . . . . 101
I.6.2 Simple Algebraic Functions . . . . . . . . . . . . . 102
I.6.3 Local Boundedness of Algebraic Functions . . . . 104
I.6.4 Global Boundedness . . . . . . . . . . . . . . . . . 107
I.6.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . 108
June15,2015 12:23 BC:9448-WhatIsCalculus? Calculus˙corrs pageix
Contents ix
II. Derivatives: How to Measure Change 111
II.1 Algebraic Derivatives by Approximation. . . . . . . . . . 112
II.1.1 From Factorization to Average Rates of Change . 112
II.1.2 From Average to Instantaneous Rates of
Change . . . . . . . . . . . . . . . . . . . . . . . 120
II.1.3 Approximation of Algebraic Derivatives . . . . . 122
II.1.4 Exercises. . . . . . . . . . . . . . . . . . . . . . . 126
II.2 Derivatives of Exponential Functions . . . . . . . . . . . 127
II.2.1 Tangents for y =2x . . . . . . . . . . . . . . . . . 128
II.2.2 The Tangent to y =2x at x=0 . . . . . . . . . . 130
II.2.3 Other Exponential Functions . . . . . . . . . . . 136
II.2.4 The “Natural” Exponential Function . . . . . . . 137
II.2.5 The Natural Logarithm . . . . . . . . . . . . . . 139
II.2.6 The Derivative of lnx . . . . . . . . . . . . . . . 140
II.2.7 The Differential Equation of Exponential
Functions . . . . . . . . . . . . . . . . . . . . . . 141
II.2.8 Exercises. . . . . . . . . . . . . . . . . . . . . . . 143
II.3 Differentiability and Local Linear Approximation . . . . 144
II.3.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . 144
II.3.2 Continuous Functions . . . . . . . . . . . . . . . 147
II.3.3 Differentiable Functions . . . . . . . . . . . . . . 150
II.3.4 Local Linear Approximation . . . . . . . . . . . . 152
II.3.5 Exercises. . . . . . . . . . . . . . . . . . . . . . . 157
II.4 Properties of Continuous Functions . . . . . . . . . . . . 158
II.4.1 Rules for Limits . . . . . . . . . . . . . . . . . . . 158
II.4.2 Rules for Continuous Functions . . . . . . . . . . 160
II.4.3 The Intermediate Value Theorem . . . . . . . . . 161
II.4.4 Continuity and Boundedness . . . . . . . . . . . 162
II.4.5 Exercises. . . . . . . . . . . . . . . . . . . . . . . 164
II.5 Derivatives of Trigonometric Functions . . . . . . . . . . 165
II.5.1 Continuity of sine and cosine Functions . . . . . 165
II.5.2 The Derivative of sint at t=0 . . . . . . . . . . 166
II.5.3 The Derivative of sint . . . . . . . . . . . . . . . 169
II.5.4 The cosine Function . . . . . . . . . . . . . . . . 172
II.5.5 A Differential Equation for sine and cosine . . . 172
II.5.6 Exercises. . . . . . . . . . . . . . . . . . . . . . . 173
II.6 Simple Differentiation Rules . . . . . . . . . . . . . . . . 175
II.6.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . 175
Description:This unique book provides a new and well-motivated introduction to calculus and analysis, historically significant fundamental areas of mathematics that are widely used in many disciplines. It begins with familiar elementary high school geometry and algebra, and develops important concepts such as t