ebook img

Welding Theory and Appln. [auth. unkn.] PDF

741 Pages·2006·19.621 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Welding Theory and Appln. [auth. unkn.]

WELDING THEORY & APPLICATION WELDING THEORY & APPLICATION Table of Contents CHAPTER 1 - INTRODUCTION Section I - General Section II - Theory CHAPTER 2 - SAFETY PRECAUTIONS IN WELDING OPERATIONS Section I - General Safety Precautions Section II - Safety Precautions in Oxyfuel Welding Section III - Safety in Arc Welding and Cutting Section IV - Safety Precautions for Gas Shielded Arc Welding Section V - Safety Precautions for Welding and Cutting Containers That Have Held Combustibles Section VI - Safety Precautions for Welding and Cutting Polyurethane Foam Filled Assemblies CHAPTER 3 - PRINT READING AND WELDING SYMBOLS Section I - Print Reading Section II - Weld and Welding Symbols CHAPTER 4 - JOINT DESIGN AND PREPARATION OF METALS file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/welding-theory.htm (1 of 5)1/8/2006 4:10:27 PM WELDING THEORY & APPLICATION CHAPTER 5 - WELDING AND CUTTING EQUIPMENT Section I - Oxyacetylene Welding Equipment Section II - Oxyacetylene Cutting Equipment Section III - Arc Welding Equipment and Accessories Section IV - Resistance Welding Equipment Section V - Thermit Welding Equipment Section VI - Forge Welding Tools and Equipment CHAPTER 6 - WELDING TECHNIQUES Section I - Description Section II - Nomenclature of the Weld Section III - Types of Welds and Welded Joints Section IV - Welding Positions Section V - Expansion and Contraction in Welding Operations Section VI - Welding Problems and Solutions CHAPTER 7 - METALS IDENTIFICATION Section I - Characteristics Section II - Standard Metal Designations Section III - General Description and Weldability of Ferrous Metals Section IV - General Description and Weldability of Nonferrous Metals file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/welding-theory.htm (2 of 5)1/8/2006 4:10:27 PM WELDING THEORY & APPLICATION CHAPTER 8 - ELECTRODES AND FILLER METALS Section I - Types of Electrodes Section II - Other Filler Metals CHAPTER 9 - MAINTENANCE WELDING OPERATIONS FOR MILITARY EQUIPMENT CHAPTER 10 - ARC WELDING AND CUTTING PROCESSES Section I - General Section II - Arc Processes Section III - Related Processes CHAPTER 11 - OXYGEN FUEL GAS WELDING PROCEDURES Section I - Welding Processes and Techniques Section II - Welding and Brazing Ferrous Metals Section III - Related Processes Section IV - Welding, Brazing, and Soldering Nonferrous Metals CHAPTER 12 - SPECIAL APPLICATIONS Section I - Underwater Cutting and Welding with the Electric Arc Section II - Underwater Cutting with Oxyfuel Section III - Metallizing Section IV - Flame Cutting Steel and Cast Iron file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/welding-theory.htm (3 of 5)1/8/2006 4:10:27 PM WELDING THEORY & APPLICATION Section V - Flame Treating Metal Section VI - Cutting and Hard Surfacing with the Electric Arc Section VII - Armor Plate Welding and Cutting Section VIII - Pipe Welding Section IX - Welding Cast Iron, Cast Steel, Carbon Steel, and Forgings Section X - Forge Welding Section XI - Heat Treatment of Steel Section XII - Other Welding Processes CHAPTER 13 - DESTRUCTIVE AND NONDESTRUCTIVE TESTING Section I - Performance Testing Section II - Visual Inspection and Corrections Section III - Physical Testing APPENDIX A - REFERENCES APPENDIX B - PROCEDURE GUIDES FOR WELDING APPENDIX C - TROUBLESHOOTING PROCEDURES APPENDIX D - MATERIALS USED FOR BRAZING, WELDING, SOLDERING, CUTTING, AND METALLIZING APPENDIX E - MISCELLANEOUS DATA GLOSSARY file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/welding-theory.htm (4 of 5)1/8/2006 4:10:27 PM WELDING THEORY & APPLICATION LIST OF ILLUSTRATIONS LIST OF TABLES WARNINGS file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/welding-theory.htm (5 of 5)1/8/2006 4:10:27 PM Chptr 1 Introduction CHAPTER 1 INTRODUCTION Section I. GENERAL 1-1. SCOPE This training circular is published for use by personnel concerned with welding and other metal joining operations in the manufacture and maintenance of materiel. 1-2. DESCRIPTION a. This circular contains information as outlined below: (1) Introduction (2) Safety precautions in welding operations (3) Print reading and welding symbols (4) Joint design and preparation of metals (5) Welding and cutting equipment (6) Welding techniques (7) Metals identification (8) Electrodes and filler metals (9) Maintenance welding operations for military equipment (10) Arc welding and cutting processes (11) Oxygen fuel gas welding processes file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/ch1.htm (1 of 2)1/8/2006 4:10:27 PM Chptr 1 Introduction (12) Special applications (13) Destructive and nondestructive testing b. Appendix A contains a list of current references, including supply and technical manuals and other available publications relating to welding and cutting operations. c. Appendix B contains procedure guides for welding. d. Appendix C contains a troubleshooting chart. e. Appendix D contains tables listing materials used for brazing. welding, soldering, arc cutting, and metallizing. f. Appendix E contains miscellaneous data as to temperature ranges, melting points, and other information not contained in the narrative portion of this manual. Section II. THEORY 1-3. GENERAL Welding is any metal joining process wherein coalescence is produced by heating the metal to suitable temperatures, with or without the application of pressure and with or without the use of filler metals. Basic welding processes are described and illustrated in this manual. Brazing and soldering, procedures similar to welding, are also covered. 1-4. METALS a. Metals are divided into two classes, ferrous and nonferrous. Ferrous metals are those in the iron class and are magnetic in nature. These metals consist of iron, steel, and alloys related to them. Nonferrous metals are those that contain either no ferrous metals or very small amounts. These are generally divided into the aluminum, copper, magnesium, lead, and similar groups. b. Information contained in this circular covers theory and application of welding for all types of metals including recently developed alloys. file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/ch1.htm (2 of 2)1/8/2006 4:10:27 PM Chptr 2 Safety Precautions in Welding Operations CHAPTER 2 SAFETY PRECAUTIONS IN WELDING OPERATIONS Section I. GENERAL SAFETY PRECAUTIONS 2-1. GENERAL a. To prevent injury to personnel, extreme caution should be exercised when using any types of welding equipment. Injury can result from fire, explosions, electric shock, or harmful agents. Both the general and specific safety precautions listed below must be strictly observed by workers who weld or cut metals. b. Do not permit unauthorized persons to use welding or cutting equipment. c. Do not weld in a building with wooden floors, unless the floors are protected from hot metal by means of fire resistant fabric, sand, or other fireproof material. Be sure that hot sparks or hot metal will not fall on the operator or on any welding equipment components. d. Remove all flammable material, such as cotton, oil, gasoline, etc., from the vicinity of welding. e. Before welding or cutting, warm those in close proximity who are not protected to wear proper clothing or goggles. f. Remove any assembled parts from the component being welded that may become warped or otherwise damaged by the welding process. g. Do not leave hot rejected electrode stubs, steel scrap, or tools on the floor or around the welding equipment. Accidents and/or fires may occur. h. Keep a suitable fire extinguisher nearby at all times. Ensure the fire extinguisher is in operable condition. i. Mark all hot metal after welding operations are completed. Soapstone is commonly used for this purpose. 2-2. PERSONAL PROTECTIVE EQUIPMENT file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/ch2.htm (1 of 46)1/8/2006 4:10:30 PM Chptr 2 Safety Precautions in Welding Operations a. General. The electric arc is a very powerful source of light, including visible, ultraviolet, and infrared. Protective clothing and equipment must be worn during all welding operations. During all oxyacetylene welding and cutting proccesses, operators must use safety goggles to protect the eyes from heat, glare, and flying fragments of hot metals. During all electric welding processes, operators must use safety goggles and a hand shield or helmet equipped with a suitable filter glass to protect against the intense ultraviolet and infrared rays. When others are in the vicinity of the electric welding processes, the area must be screened so the arc cannot be seen either directly or by reflection from glass or metal. b. Helmets and Shields. (1) Welding arcs are intensely brilliant lights. They contain a proportion of ultraviolet light which may cause eye damage. For this reason, the arc should never be viewed with the naked eye within a distance of 50.0 ft (15.2 m). The brilliance and exact spectrum, and therefore the danger of the light, depends on the welding process, the metals in the arc, the arc atmosphere, the length of the arc, and the welding current. Operators, fitters, and those working nearby need protection against arc radiation. The intensity of the light from the arc increases with increasing current and arc voltage. Arc radiation, like all light radiation, decreases with the square of the distance. Those processes that produce smoke surrounding the arc have a less bright arc since the smoke acts as a filter. The spectrum of the welding arc is similar to that of the sun. Exposure of the skin and eyes to the arc is the same as exposure to the sun. (2) Being closest, the welder needs a helmet to protect his eyes and face from harmful light and particles of hot metal. The welding helmet (fig. 2-1) is generally constructed of a pressed fiber insulating material. It has an adjustable headband that makes it usable by persons with different head sizes. To minimize reflection and glare produced by the intense light, the helmet is dull black in color. It fits over the head and can be swung upward when not welding. The chief advantage of the helmet is that it leaves both hands free, making it possible to hold the work and weld at the same time. file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/ch2.htm (2 of 46)1/8/2006 4:10:30 PM Chptr 2 Safety Precautions in Welding Operations (3) The hand-held shield (fig. 2-1) provides the same protection as the helmet, but is held in position by the handle. This type of shield is frequently used by an observer or a person who welds for a short period of time. (4) The protective welding helmet has lens holders used to insert the cover glass and the filter glass or plate. Standard size for the filter plate is 2 x 4-1/4 in. (50 x 108 mm). In some helmets lens holders open or flip upwards. Lenses are designed to prevent flash burns and eye damage by absorption of the infrared and ultraviolet rays produced by the arc. The filter glasses or plates come in various optical densities to filter out various light intensities, depending on the welding process, type of base metal, and the welding current. The color of the lens, usually green, blue, or brown, is an added protection against the intensity of white light or glare. Colored lenses make it possible to clearly see the metal and weld. Table 2-1 lists the proper filter shades to be used. A magnifier lens placed behind the filter glass is sometimes used to provide clear vision. file:///C|/Documents%20and%20Settings/Dad/Desktop/welding-theory/ch2.htm (3 of 46)1/8/2006 4:10:30 PM

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.