ebook img

Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of $H^1_L(w)$ PDF

0.42 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Weighted Hardy spaces associated with elliptic operators. Part II: Characterizations of $H^1_L(w)$

WEIGHTED HARDY SPACES ASSOCIATED WITH ELLIPTIC OPERATORS. PART II: CHARACTERIZATIONS OF H1(w) L JOSÉMARÍAMARTELLANDCRUZPRISUELOS-ARRIBAS Abstract. Given a Muckenhoupt weight w and a second order divergence form elliptic operator 7 L, we consider different versions of the weighted Hardy space H1(w) defined by conical square L 1 functions and non-tangential maximal functions associated with the heat and Poisson semigroups 0 generatedby L. Weshow thatallofthemareisomorphicandalsothat H1(w)admitsamolecular L 2 characterization. One of the advantages of our methods is that our assumptions extend naturally b theunweightedtheorydevelopedbyS.HofmannandS.Mayborodain[19]andwecanimmediately e recovertheunweightedcase.Someofourtoolsconsistinestablishingweightednorminequalitiesfor F thenon-tangentialmaximalfunctions,aswellascomparingthemwithsomeconicalsquarefunctions inweightedLebesguespaces. 6 ] A C . Contents h t a 1. Introduction 2 m 2. Preliminaries 3 [ 2.1. Muckenhoupt weights 3 3 v 2.2. Ellipticoperators 5 0 2.3. Off-diagonalestimates 5 2 9 2.4. Conicalsquarefunctions andnon-tangential maximalfunctions 6 0 0 3. Definitionsandmainresults 7 . 1 3.1. MolecularweightedHardyspaces 7 0 3.2. WeightedHardyspacesassociated withoperators 8 7 1 3.3. Mainresults 8 : v 4. Auxiliaryresults 9 i X 5. Characterization ofthe weighted Hardy spaces defined bysquare functions associated r withtheheatsemigroup 11 a 5.1. ProofofProposition 5.2 13 5.2. ProofofProposition 5.1,part(a) 16 5.3. ProofofProposition 5.1,part(b) 22 Date: January10,2017.Revised:February1,2017. 2010MathematicsSubjectClassification. 42B30,35J15,42B37,42B25,47D06,47G10. Key words and phrases. Hardy spaces, second order divergence form elliptic operators, heat and Poisson semi- groups, conical squarefunctions, non-tangential maximal functions, moleculardecomposition, Muckenhoupt weights, off-diagonalestimates. TheresearchleadingtotheseresultshasreceivedfundingfromtheEuropeanResearchCouncilundertheEuropean Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC agreement no. 615112 HAPDEGMT. Both authors acknowledgefinancialsupportfromtheSpanishMinistryofEconomyandCompetitiveness,throughthe“SeveroOchoa ProgrammeforCentresofExcellenceinR&D”(SEV-2015-0554). BothauthorswouldliketothankP.Auscherforhis usefulcommentsandsuggestions. 1 2 JOSÉMARÍAMARTELLANDCRUZPRISUELOS-ARRIBAS 6. Characterization ofthe weighted Hardy spaces defined bysquare functions associated withthePoissonsemigroup 23 6.1. ProofofProposition 6.1,part(a) 24 6.2. ProofofProposition 6.1,part(b). 26 6.3. ProofofProposition 6.1,part(c). 26 7. Non-tangential maximalfunctions 27 7.1. ProofofProposition 7.1,part(a) 27 7.2. ProofofProposition 7.1,part(b) 27 7.3. ProofofProposition 7.2 30 7.4. Characterization oftheweightedHardyspacesassociated with and 37 H P N N References 42 1. Introduction This is the second of a series of three papers whose aim is to study and develop a theory for weightedHardyspacesassociatedwithdifferentoperators. ThestudyofHardyspacesbeganinthe early 1900s in the context of Fourier series and complex analysis in one variable. It was not until 1960whenthetheoryinRnstarteddevelopingbyE.M.SteinandG.Weiss([25]). Afewyearslater R.R. Coifman in [12] and R.H. Latter in [22] gave an atomic decomposition of the Hardy spaces Hp, 0 < p 1. This atomic decomposition turns out to be a very important tool when studying ≤ theboundedness ofsomesingularintegraloperators, sinceinmostcaseschecking theactionofthe operator inquestion onthese simpler elements (atoms) suffices toconclude its boundedness inthe corresponding Hardyspace. AnotherstageintheprogressofthetheoryofHardyspaceswasdonebyJ.García-Cuervain[15] (see also [26]) when he considered Rn with the measure given by a Muckenhoupt weight. These spaces were called weighted Hardy spaces, and among other contributions, he also characterized themusinganatomicdecomposition. In general, the development of the theory of Hardy spaces has contributed to give us a better understanding of some other topics as in the theory of singular integrals operators, maximal func- tions, multiplier operators, etc. However, there are some operators that escape from the theory of these classical Hardy spaces. These are, for example, the operators associated with a second order divergence form elliptic operator L, such as the conical square functions and non-tangential maximal functions defined by the heat and Poisson semigroups generated by the operator L, (see (2.14)-(2.19)and(2.20)–(2.21)fortheprecisedefinitions oftheseoperators). Thetheory of Hardy spaces associated with elliptic operators L was initiated in an unpublished workbyP.Auscher,X.T.DuongandA.McIntosh[3]. P.AuscherandE.Russin[9]consideredthe caseonwhichtheheatkernelassociatedwithLissmoothandsatisfiespointwiseGaussianbounds, this occurs for instance for real symmetric operators. There, among other things, it was shown thatthecorresponding Hardyspaceassociated with Lagreeswiththeclassical Hardyspace. Inthe settingofRiemannianmanifoldssatisfyingthedoublingvolumeproperty, Hardyspacesassociated with the Laplace-Beltrami operator are introduced in [8] by P. Auscher, A. McIntosh and E. Russ and it is shown that they admit several characterizations. Simultaneously, in the Euclidean set- ting, thestudy ofHardyspaces related totheconical squarefunctions andnon-tangential maximal functions associated with the heat and Poisson semigroups generated by divergence form elliptic operators L was taken by S. Hofmann and S. Mayboroda in [19], for p = 1. The new point was WEIGHTEDHARDYSPACESASSOCIATEDWITHELLIPTICOPERATORS 3 that only a form of decay weaker than pointwise bounds and satisfied in many occurrences was enoughtodevelopatheory. ThiswasfollowedlateronbyasecondarticleofS.Hofmann,S.May- boroda, and A.McIntosh [20], for ageneral pand simultaneously byan article ofR. Jiang and D. Yang[21]. AnaturallineofstudyinthecontextofthesenewHardyspacesisthedevelopmentofa weightedtheoryforthem,asJ.García-Cuervadidintheclassicalsetting. Someinterestingprogress has been done in this regard by T.A. Bui, J. Cao, L.D.Ky, D. Yang, and S. Yang in [10, 11]. The results obtained in [11] in the particular case ϕ(x,t) := tw(x), where w is a Muckenhoupt weight, give characterizations of the weighted Hardy spaces that, however, only recover part of the results obtained intheunweighted casebysimplytakingw = 1. In this paper we take a further step, and present a different approach to the theory of weighted Hardy spaces H1(w) (the general case Hp(w) will be treated in the forthcoming paper [24]) as- L L sociated with a second order divergence form elliptic operator, which naturally generalizes the unweighted setting developed in [19]. Wedefine weighted Hardy spaces associated with the coni- calsquarefunctions considered in(2.14)–(2.19)whicharewrittenintermsoftheheatandPoisson semigroups generated by the elliptic operator. Also, we use non-tangential maximal functions as defined in (2.20)–(2.21). We show that the corresponding spaces are all isomorphic and admit a molecular characterization. This isparticularly useful to prove different properties ofthese spaces ashappens intheclassical settingandinthecontext ofsecond orderdivergence formelliptic oper- atorsconsidered in[19]. Some of the ingredients that are crucial in the present work are taken from the first part of this seriesofpapers[23],wherewealreadyobtained optimalrangesfortheweightednorminequalities satisfied by the heat and Poisson conical square functions associated with the elliptic operator. Here, we need to obtain analogous results for the non-tangential maximal functions associated with the heat and Poisson semigroups (see Section 7). All these weighted norm inequalities for the conical square functions and the non-tangential maximal functions, along with the important fact that our molecules belong naturally to weighted Lebesgue spaces, allow us to impose natural conditions that in particular lead to fully recover the results obtained in [19] by simply taking the weight identically one. It is relevant to note that in [10, 11] their molecules belong to unweighted Lebesgue spaces and also their ranges of boundedness of the conical square functions are smaller. Thismakestheirhypothesissomehowstronger(althoughsometimestheycannotbecomparedwith ours) and, despite making a very big effort to present a very general theory, the unweighted case doesnotfollowimmediatelyfromtheirwork. The plan of this paper is as follows. In the next section we present some preliminaries con- cerning Muckenhoupt weights, elliptic operators and introduce the conical square functions and non-tangential maximal functions. In Section 3 we define the different versions of the weighted Hardyspaces andstate our mainresults. Section 4contains someauxiliary results. Sections 5and 6dealwiththecharacterization oftheweighted Hardy spaces definedintermsofsquare functions associated with the heat and Poisson semigroups, respectively. Finally, in Section 7 we study the non-tangential maximalfunctions andtheweightedHardyspacesassociated withthem. 2. Preliminaries 2.1. Muckenhouptweights. Wewillwork with Muckenhoupt weights w, which are locally inte- grablepositivefunctions. Wesaythatw A if,foreveryball B Rn,thereholds 1 ∈ ⊂ w(x)dx Cw(y), fora.e. y B, − ≤ ∈ B Z 4 JOSÉMARÍAMARTELLANDCRUZPRISUELOS-ARRIBAS or, equivalently, w Cw a.e. where denotes the uncentered Hardy-Littlewood maximal u u M ≤ M operator overballsinRn. Foreach1 < p< ,wesaythatw A ifitsatisfies p ∞ ∈ p 1 w(x)dx w(x)1−p′dx − C, B Rn. − − ≤ ∀ ⊂ (cid:18)ZB (cid:19)(cid:18)ZB (cid:19) The reverse Hölder classes are defined as follows: for each 1 < s < , w RH if, for every ball s ∞ ∈ B Rn,wehave ⊂ 1 s w(x)sdx C w(x)dx. − ≤ − (cid:18)ZB (cid:19) ZB For s= ,w RH providedthatthereexistsaconstantC suchthatforeveryball B Rn ∞ ∈ ∞ ⊂ w(y) C w(x)dx, fora.e. y B. ≤ − ∈ B Z Notice that we have excluded the case q = 1 since the class RH consists of all the weights, and 1 thatisthewayRH isunderstood inwhatfollows. 1 Wesum upsome ofthe properties ofthese classes inthe following result, see forinstance [16], [14],or[17]. Proposition 2.1. (i) A A A for1 p q< . 1 p q ⊂ ⊂ ≤ ≤ ∞ (ii) RH RH RH for1< p q . q p ∞ ⊂ ⊂ ≤ ≤ ∞ (iii) Ifw A ,1 < p < ,thenthereexists1 < q < psuchthatw A . p q ∈ ∞ ∈ (iv) Ifw RH ,1 < s< ,thenthereexists s < r < suchthatw RH . s r ∈ ∞ ∞ ∈ (v) A = A = RH . p s ∞ 1 p< 1<s ≤[∞ [≤∞ (vi) If1 < p< ,w Ap ifandonlyifw1−p′ Ap . ∞ ∈ ∈ ′ (vii) Forevery1 < p< ,w A ifandonlyif isboundedonLp(w). Also,w A ifandonly p 1 ∞ ∈ M ∈ if isboundedfrom L1(w)intoL1, (w),where denotesthecenteredHardy-Littlewood ∞ M M maximaloperator. Foraweightw A ,define ∈ ∞ (2.2) r := inf 1 r < :w A , s := inf 1 s< : w RH . w r w s { ≤ ∞ ∈ } { ≤ ∞ ∈ ′} Notice that according to our definition s is the conjugated exponent of the one defined in [5, w Lemma4.1]. Given0 p < q ,w A ,andaccording to[5,Lemma4.1]wehave 0 0 ≤ ≤ ∞ ∈ ∞ q (2.3) Ww(p0,q0):= (cid:26)p: p0 < p< q0,w ∈ App0 ∩RH(cid:16)qp0(cid:17)′(cid:27)= (cid:18)p0rw, sw0(cid:19). If p = 0 and q < it is understood that the only condition that stays is w RH . Analo- 0 0 ∞ ∈ q0 ′ (cid:16) p(cid:17) gously, if0 < p0 andq0 = theonlyassumption isw A p . Finally w(0, )= (0, ). ∞ ∈ p0 W ∞ ∞ We recall some properties of Muckenhoupt weights. Let w be a weight in A , if w A , r ∞ ∈ 1 r < ,foreveryball Bandeverymeasurable setE B, ≤ ∞ ⊂ r w(E) E (2.4) [w] 1 | | . w(B) ≥ −Ar B (cid:18)| |(cid:19) Thisimpliesinparticular thatwisadoubling measure: (2.5) w(λB) [w] λnrw(B), B, λ > 1. ≤ Ar ∀ ∀ WEIGHTEDHARDYSPACESASSOCIATEDWITHELLIPTICOPERATORS 5 Besides,ifw RH ,1 s< , s ∈ ′ ≤ ∞ 1 w(E) E s (2.6) [w] | | . RH w(B) ≤ s′ B (cid:18)| |(cid:19) 2.2. Elliptic operators. Let A be an n n matrix of complex and L -valued coefficients defined ∞ × on Rn. We assume that this matrix satisfies the following ellipticity (or “accretivity”) condition: thereexist0< λ Λ < suchthat ≤ ∞ (2.7) λ ξ2 ReA(x)ξ ξ¯, and A(x)ξ ζ¯ Λ ξ ζ, | | ≤ · | · |≤ | || | forall ξ,ζ Cn andalmost every x Rn. Wehaveused the notation ξ ζ = ξ ζ + +ξ ζ and 1 1 n n therefore ξ∈ζ¯ is the usual inner pro∈duct in Cn. Associated with this m·atrix we defi·n·e· the second · orderdivergence formelliptic operator (2.8) Lf = div(A f), − ∇ which is understood in the standard weak sense as a maximal-accretive operator on L2(Rn) with domain (L)bymeansofasesquilinear form. D As in [1] and [6], we denote respectively by (p (L),p (L)) and (q (L),q (L)) the maximal + + open intervals on which the heat semigroup e tL −and its gradient √−t e tL are uniformly − t>0 y − t>0 { } { ∇ } bounded onLp(Rn): (2.9) p (L) := inf p (1, ) :sup e t2L < , − Lp(Rn) Lp(Rn) − (cid:26) ∈ ∞ t>0 k k → ∞(cid:27) (2.10) p (L) := sup p (1, ): sup e t2L < , + − Lp(Rn) Lp(Rn) (cid:26) ∈ ∞ t>0 k k → ∞(cid:27) (2.11) q (L):= inf p (1, ) :sup t e t2L < , y − Lp(Rn) Lp(Rn) − (cid:26) ∈ ∞ t>0 k ∇ k → ∞(cid:27) (2.12) q (L):= sup p (1, ) :sup t e t2L < . + y − Lp(Rn) Lp(Rn) (cid:26) ∈ ∞ t>0 k ∇ k → ∞(cid:27) From [1] (see also [6]) we know that p (L) = 1 and p (L) = if n = 1,2; and if n 3 then + p (L) < 2n and p (L) > 2n. Moreov−er, q (L) = p (L), q (L∞) p (L) (where q (L≥) is the So−bolev enx+p2onent o+f q (L) an−s2defined below)−, and we−always+have∗ q≤(L+) > 2, with q+(L)∗= if + + + ∞ n = 1. Notethatinplaceofthesemigroup e tL weareusingitsrescaling e t2L . Wedososince − t>0 − t>0 { } { } all the “heat” square functions are written using the latter and also because in the context of the off-diagonal estimatesdiscussed belowitwillsimplifysomecomputations. Besides,forevery K N and0< q < letusset 0 ∈ ∞ qn , if (2K +1)q < n, qK, := n (2K +1)q ∗  − , if (2K +1)q n.  ∞ ≥ Corresponding tothecase K = 0,wewriteq := q0, .  ∗ ∗ 2.3. Off-diagonalestimates. Webrieflyrecall thenotion ofoff-diagonal estimates. Let T be t t>0 { } a family of linear operators and let 1 p q . We say that T satisfies Lp(Rn) Lq(Rn) t t>0 ≤ ≤ ≤ ∞ { } − off-diagonalestimatesofexponential type,denotedby T (Lp Lq),ifforallclosedsets t t>0 { } ∈ F∞ → E, F,all f,andallt > 0wehave Tt(f 1E)1F Lq(Rn) Ct−n(cid:16)1p−1q(cid:17)e−cd(Et,2F)2 f 1E Lp(Rn). k k ≤ k k 6 JOSÉMARÍAMARTELLANDCRUZPRISUELOS-ARRIBAS Analogously, givenβ > 0,wesaythat T satisfiesLp Lqoff-diagonalestimatesofpolynomial t t>0 { } − type with order β > 0, denoted by T (Lp Lq) if for all closed sets E, F, all f, and all t t>0 β { } ∈ F → t > 0wehave n 1 1 d(E,F)2 −(cid:16)β+2n(cid:16)1p−1q(cid:17)(cid:17) kTt(f 1E)1FkLq(Rn) ≤Ct− (cid:16)p−q(cid:17) 1+ t2 kf 1EkLp(Rn). (cid:18) (cid:19) Theheat and Poisson semigroups satisfy respectively off-diagonal estimates ofexponential and polynomialtype. Beforemakingthisprecise,letusrecallthedefinitionof p (L), p (L),q (L),and + − − q (L)in(2.9)–(2.10)andin(2.11)–(2.12). Theimportanceoftheseparametersstemsfromthefact + that, besides giving the maximal intervals on which either the heat semigroup or its gradient are uniformly bounded, they characterize the maximal open intervals on which off-diagonal estimates ofexponential typehold(see[1]and[6]). Moreprecisely, foreverym N ,therehold 0 ∈ (t2L)me t2L (Lp Lq) forall p (L) < p q < p (L) − t>0 + { } ∈ F∞ − − ≤ and t e t2L (Lp Lq) forall q (L) < p q < q (L). y − t>0 + { ∇ } ∈ F∞ − − ≤ Fromtheseoff-diagonal estimateswehave,foreverym N , 0 ∈ (t√L)2me t√L , (Lp Lq), { − }t>0 ∈ Fm+12 → forall p (L) < p q< p (L),and + − ≤ t (t2L)me t2L , t (t2L)me t2L (Lp Lq), y − t>0 y,t − t>0 { ∇ } { ∇ } ∈ F∞ → t (t√L)2me t√L (Lp Lq), t (t√L)2me t√L (Lp Lq), { ∇y − }t>0 ∈ Fm+1 → { ∇y,t − }t>0 ∈ Fm+21 → forallq (L) < p q < q (L),(see[23,Section2]). + − ≤ 2.4. Conical square functionsand non-tangential maximal functions. The operator L gener- − atesaC0-semigroup e tL ofcontractions on L2(Rn)whichiscalledtheheat semigroup. Using − t>0 { } thissemigroup andthecorresponding Poissonsemigroup e t√L ,onecandefinedifferentconi- − t>0 { } calsquarefunctions whichallhaveanexpression oftheform 1 dydt 2 (2.13) Qαf(x) = T f(y)2 , x Rn, | t | tn+1 ∈ (cid:18)ZZΓα(x) (cid:19) whereα > 0andΓα(x) := (y,t) Rn+1 : x y < αt denotes thecone(ofaperture α)withvertex + { ∈ | − | } at x Rn (see (4.1)). When α = 1 we just write Qf(x) and Γ(x). More precisely, we introduce ∈ the following conical square functions written in terms of the heat semigroup e tL (hence the − t>0 { } subscript H): foreverym N, ∈ 1 (2.14) f(x) = (t2L)me t2Lf(y)2dydt 2 , Sm,H | − | tn+1 (cid:18)ZZΓ(x) (cid:19) and,foreverym N := N 0 , 0 ∈ ∪{ } 1 (2.15) G f(x) = t (t2L)me t2Lf(y)2dydt 2 , m,H | ∇y − | tn+1 (cid:18)ZZΓ(x) (cid:19) 1 (2.16) f(x) = t (t2L)me t2Lf(y)2dydt 2 . Gm,H | ∇y,t − | tn+1 (cid:18)ZZΓ(x) (cid:19) WEIGHTEDHARDYSPACESASSOCIATEDWITHELLIPTICOPERATORS 7 In the same manner, let us consider conical square functions associated with the Poisson semi- group e t√L (hencethesubscript P): given K N, − t>0 { } ∈ 1 dydt 2 (2.17) f(x) = (t√L)2Ke t√Lf(y)2 , SK,P | − | tn+1 (cid:18)ZZΓ(x) (cid:19) andforevery K N , 0 ∈ 1 dydt 2 (2.18) G f(x) = t (t√L)2Ke t√Lf(y)2 , K,P | ∇y − | tn+1 (cid:18)ZZΓ(x) (cid:19) 1 dydt 2 (2.19) f(x) = t (t√L)2Ke t√Lf(y)2 . GK,P | ∇y,t − | tn+1 (cid:18)ZZΓ(x) (cid:19) Corresponding to the cases m = 0 or K = 0 we simply write G f := G f, f := f, H 0,H H 0,H G G G f := G f,and f := f. Besides,weset f := f, f := f. P 0,P P 0,P H 1,H P 1,P G G S S S S Wealsointroducethenon-tangentialmaximalfunctions and associatedrespectivelywith H P N N theheatandPoissonsemigroups: 1 (2.20) f(x) = sup e t2Lf(z)2dz 2 NH | − | tn (y,t)∈Γ(x)(cid:18)ZB(y,t) (cid:19) and 1 dz 2 (2.21) f(x) = sup e t√Lf(z)2 . NP | − | tn (y,t)∈Γ(x)(cid:18)ZB(y,t) (cid:19) 3. Definitionsandmainresults As in the classical setting our weighted Hardy spaces will admit several characterizations us- ing molecules, conical square functions, or non-tangential maximal functions. They will extend the definitions and results obtained in the unweighted case in [19], to weights w A such that (p (L),p (L)) , . ∈ ∞ w + W − ∅ 3.1. Molecular weighted Hardy spaces. To set the stage, we take a molecular version of the weightedHardyspaceastheoriginal definition, andweshallshowthatalltheotherdefinitions are isomorphictothatoneandoneanother. Inordertoformalizethenotionofmoleculesandmolecular decomposition weintroduce thefollowingnotation: givenacube Q Rn weset ⊂ (3.1) C (Q) := 4Q, C(Q) := 2i+1Q 2iQ, for i 2, and Q = 2i+1Q, for i 1. 1 i i \ ≥ ≥ Definition 3.2 (Molecules and molecular representation). Let w A , p (p (L),p (L)), w + ∈ ∞ ∈ W − ε > 0,and M Nsuchthat M > n r 1 . ∈ 2 w− p (L) − (a) Molecules: We say that a fu(cid:16)nction m (cid:17)Lp(w), (belonging to the range of Lk in Lp(w)), is a ∈ (w,p,ε,M) moleculeif,forsomecube Q Rn,msatisfies − ⊂ M kmkmol,w := 2iεw(2i+1Q)1−1p (ℓ(Q)2L)−km 1Ci(Q) Lp(w) < 1. i 1 k=0 X≥ X(cid:13)(cid:0) (cid:1) (cid:13) Henceforth,werefertothepreviousexpressi(cid:13)onasthemolecularw-(cid:13)normofm. Additionally, anycube Qsatisfying thatexpression, iscalled acubeassociated withm. Besides, notethat ifmisa(w,p,ε,M) molecule,inparticular wehave − (3.3) (ℓ(Q)2L)−km 1Ci(Q) Lp(w) ≤ 2−iεw(2i+1Q)1p−1, i = 1,2,...; k = 0,1,...,M. (cid:13)(cid:0) (cid:1) (cid:13) (cid:13) (cid:13) 8 JOSÉMARÍAMARTELLANDCRUZPRISUELOS-ARRIBAS (b) Molecularrepresentation: Foranyfunction f Lp(w),wesaythatthesum λm isa ∈ i N i i (w,p,ε,M) representation of f,ifthefollowingconditions aresatisfied: ∈ − P (i) λ ℓ1. i i N { }∈ ∈ (ii) Foreveryi N,m isa(w,p,ε,M) molecule. i ∈ − (iii) f = λm inLp(w). i N i i ∈ Theseobjects aPreaweightedversionoftheonesdefinedin[19]intheunweighted case. WefinallydefinethemolecularweightedHardyspaces. Definition3.4(MolecularweightedHardyspaces). Forw A , p (p (L),p (L)),ε > 0,and w + ∈ ∞ ∈ W − M N such that M > n r 1 , we define the molecular weighted Hardy space H1 (w) ∈ 2 w− p (L) L,p,ε,M asthecompletion ofthes(cid:16)et − (cid:17) ∞ ∞ H1 (w) := f = λm : λm isa(w,p,ε,M) representation of f , L,p,ε,M i i i i − ( ) i=1 i=1 X X withrespect tothenorm, ∞ ∞ f := inf λ : λm isa(w,p,ε,M) representation of f . k kH1L,p,ε,M(w) ( | i| i i − ) i=1 i=1 X X We shall show below that the Hardy spaces H1 (w) do not depend on the choice of the L,p,ε,M allowable parameters p, ε, and M. Hence, atthis point, itis convenient for us to makea choice of theseparametersanddefinetheweightedHardyspaceastheoneassociated withthischoice: Notation3.5. Fromnowon,wefixw A , p (p (L),p (L)),ε > 0,and M Nsuchthat 0 w + 0 0 ∈ ∞ ∈ W − ∈ M > n r 1 andsetH1(w) := H1 (w). 0 2 w− p (L) L L,p0,ε0,M0 − (cid:16) (cid:17) 3.2. Weighted Hardy spaces associated with operators. We next define other versions of the molecularweightedHardyspacesdefinedaboveusingdifferentoperators. Definition 3.6 (Weighted Hardy spaces associated with an operator). Let w A and take q (p (L),p (L)). Given a sublinear operator acting on functions of L∈q(w)∞we define th∈e w + Wweight−edHardyspace H1 (w)asthecompletion oTftheset ,q T (3.7) H1 (w):= f Lq(w) : f L1(w) , T,q ∈ T ∈ withrespect tothenorm (cid:8) (cid:9) (3.8) f := f . k kH1,q(w) kT kL1(w) T In our results will be any of the square functions presented in (2.14)–(2.19), or the non- T tangential maximalfunctions definedin(2.20)–(2.21). 3.3. Mainresults. Theorem 3.9. Given w A , let H1(w) be the fixed molecular Hardy space as in Notation 3.5. ∈ ∞ L For every p (p (L),p (L)), ε > 0, and M Nsuch that M > n r 1 , the following ∈ Ww − + ∈ 2 w− p (L) spacesareisomorphicto H1(w)(andthereforeoneanother) withequiva(cid:16)lent no−rms(cid:17) L H1 (w); H1 (w), m N; H1 (w), m N ; and H1 (w), m N . L,p,ε,M Sm,H,p ∈ Gm,H,p ∈ 0 Gm,H,p ∈ 0 In particular, none of these spaces depend (modulo isomorphisms) on the choice of the allowable parameters p,ε, M,andm. WEIGHTEDHARDYSPACESASSOCIATEDWITHELLIPTICOPERATORS 9 Theorem 3.10. Given w A , let H1(w) be the fixed molecular Hardy space as in Notation 3.5. Forevery p (p (L),∈p (∞L)),thefLollowingspacesareisomorphictoH1(w)(andthereforeone ∈ Ww − + L another) withequivalent norms H1 (w), K N; H1 (w), K N ; and H1 (w), K N . SK,P,p ∈ GK,P,p ∈ 0 GK,P,p ∈ 0 Inparticular, noneofthesespacesdepend(moduloisomorphisms) onthechoiceof p,and K. Theorem 3.11. Given w A , let H1(w) be the fixed molecular Hardy space as in Notation 3.5. Forevery p (p (L),∈p (∞L)),thefLollowingspacesareisomorphictoH1(w)(andthereforeone ∈ Ww − + L another) withequivalent norms H1 (w) and H1 (w). H,p P,p N N Inparticular, noneofthesespacesdepend(moduloisomorphisms) onthechoiceof p. 4. Auxiliaryresults Inthissection weintroduce somenotation andestablish someauxiliary results thatwillbevery usefulinordertosimplifytheproofsofTheorems3.9,3.10,and3.11. LetRn+1 betheupper-half space,thatis,thesetofpoints(y,t) Rn Rwitht > 0. Givenα > 0 + ∈ × and x Rn wedefinetheconeofaperture αwithvertexat xby ∈ (4.1) Γα(x) := (y,t) Rn+1 : x y < αt . + { ∈ | − | } Whenα = 1wesimplywriteΓ(x). ForaclosedsetE inRn,set (4.2) α(E) := Γα(x). R x E [∈ Whenα = 1wesimplifythenotationbywriting (E)insteadof 1(E). R R Besides,forafunction F definedinRn+1 andforevery x Rn,letusconsider + ∈ 1 dydt 2 (4.3) F := F(y,t)2 . |k k|Γ(x) | | tn+1 (cid:18)ZZΓ(x) (cid:19) Usingideasfrom[19,Lemma5.4],weobtainthefollowingresult: Lemma4.4. Forallw A and f L2(Rn). Therehold ∈ ∞ ∈ (a) f . G f ,forallm Nand0 < p < , m,H Lp(w) m 1,H Lp(w) kS k k − k ∈ ∞ (b) f . G f ,forall K Nand0 < p < . K,P Lp(w) K 1,P Lp(w) kS k k − k ∈ ∞ Furthermore, one can see that (a) and (b) hold for all functions f Lq(w) with w A and ∈ ∈ ∞ q (p (L),p (L)). w + ∈ W − Proof. Westartbyproving part(a). Fix x Rn andt > 0,andconsider ∈ B:= B(x,t), f(y) := (t2L)m−1e−t22Lf(y), and H(y) := f(y) (f)4B, − where (f) = f(y)dy. Then, applying the fact that t2Le t2L (L2 L2) and that t2Le t2L1=4Bt2L1−4=B0(see[1]e),weobtainthat { − }t>0 ∈eF∞ e→ − R e e 1 1 t2Le−t22Lf(y)2dy 2 = t2Le−t22LH(y)2dy 2 | | | | (cid:18)ZB (cid:19) (cid:18)ZB (cid:19) 1 1 . |t2eLe−t22L(H14B)(y)|2dy 2 + |t2Le−t22L(H1Cj(B))(y)|2dy 2 (cid:18)ZB (cid:19) j 2 (cid:18)ZB (cid:19) X≥ 10 JOSÉMARÍAMARTELLANDCRUZPRISUELOS-ARRIBAS 1 1 . H(y)2dy 2 + e c4j H(y)2dy 2 =: I + e c4jI . − − j | | | | (cid:18)Z4B (cid:19) j 2 (cid:18)Z2j+1B (cid:19) j 2 X≥ X≥ ByPoincaréinequality, weconcludethat 1 2 I . t f(y)2dy , y |∇ | (cid:18)Z8B (cid:19) andthat e 1 j 2 I . f(y) (f) 2dy + 2j+1B1/2 (f) (f) j 2j+1B 2kB 2k+1B | − | | | | − | (cid:18)Z2j+1B (cid:19) k=2 X e j e 1 e e 2 . 2j+1B1/2 f(y) (f) 2dy 2k+1B | | − | − | k=2 (cid:18)Z2k+1B (cid:19) X j e e 1 2 . 2(j k)n/22kt f(y)2dy . − y |∇ | k=2 (cid:18)Z2k+2B (cid:19) X Then, e 1 1 j 1 t2Le−t22Lf(y)2dy 2 . t yf(y)2dy 2 + e−c4j 2n(j2−k)+kt yf(y)2dy 2 | | |∇ | |∇ | (cid:18)ZB (cid:19) (cid:18)Z8B (cid:19) j 2 k=2 (cid:18)Z2k+2B (cid:19) X≥ X e e 1 e . e c4j t f(y)2dy 2 , − y | ∇ | j 1 (cid:18)Z2j+2B (cid:19) X≥ e andtherefore f(x) . e c4jG2j+3 f(x), Sm,H − m−1,H j 1 X≥ recallthedefinitionofG2j+3 in(2.13)and(2.15). Then,forevery0 < p < andw A ,taking the Lp(w) norm in bothmsi−d1e,Hs of the previous inequality and applying chan∞ge of ang∈les∞(see [23, Proposition 3.2]),weconclude that f . e c4j G2j+3 f . G f e c4j . G f . kSm,H kLp(w) − m−1,H Lp(w) k m−1,H kLp(w) − k m−1,H kLp(w) Xj≥1 (cid:13)(cid:13) (cid:13)(cid:13) Xj≥1 (cid:13) (cid:13) As for part (b), fix w A , f L2(Rn), and 0 < p < , and note that following the same argument of[19,Lemma∈5.4]1∞,ther∈e exist adimensional cons∞tant k NandC > 0such that for 0 1 ∈ all K Nandk N . 0 ∈ ∈ 1 1 2k f(x) C G2k+k0 f(x) 2 2k+k0 f(x) 2 , SK,P ≤ 1 K−1,P SK,P (cid:16) (cid:17) (cid:16) (cid:17) whererecall thedefinitions of 2k andG2k+k0 in(2.13),(2.17),and(2.18). Now,forsomeR > 0, SK,P K 1,P tobedeterminate later,consider − f(x) := ∞ R k 2k f(x) and G f(x) := ∞ R kG2k f(x). S∗ − SK,P ∗ − K−1,P k=0 k=0 X X 1WewanttothankSteveHofmannforsharingwithusthisargumentthatwasomittedin[19,Lemma5.4].

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.