ebook img

Weighted envelope estimation to handle variability in model selection PDF

0.14 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Weighted envelope estimation to handle variability in model selection

Weighted envelope estimation to handle variability in model selection DanielJ. Eck andR. DennisCook January5, 2017 7 1 0 Abstract 2 Envelope methodology can provide substantial efficiency gains in multivariate statistical problems, but in n a some applications the estimation of the envelope dimension can induce selection volatility that will mitigate J thosegains. Current envelope methodology does not account for theadded variance that can result fromthis 3 selectionvolatility. Inthisarticle,wecircumvent dimensionselectionvolatilitythroughthedevelopment ofa ] E weightedenvelopeestimator. Theoreticaljustificationisgivenforourweightedenvelopeestimatorandvalidity M oftheresidualbootstrapapproximationforthemultivariateregressionmodelisestablished. Asimulationstudy . t andananalysisonarealdatasetillustratetheutilityofourweightedenvelopeestimator. a t s Keywords:DimensionReduction;EnvelopeModels;ModelSelection;ResidualBootstrap;VarianceReduction. [ 1 v 1 Introduction 6 5 8 0 Envelopemethodologywasdevelopedoriginallyinthecontextofthemultivariatelinearregressionmodel(Cook,etal., 0 2010), . 1 0 Y =α+βX+ε, (1) 7 1 where α ∈ Rr, the random response vector is Y ∈ Rr, the fixed predictor vector X ∈ Rp is centered to have : v meanzero,andtheerrorvectorε∼N(0,Σ). ItwasshownbyCook,etal.(2010)thattheenvelopeestimatorof i X theunknowncoefficientmatrixβ ∈ Rr×p in(1)hasthepotentialtoyieldmassiveefficiencygainsrelativetothe r a standardestimator of β. These efficiency gainscan arise when the dimensionu of the envelope, definedin the nextsection,islessthanr. Inmostpracticalapplications,uisunknownandhastobeestimated. Thisestimation can be problematicsince the estimated varianceof the envelopeestimator is typically calculatedconditionalon the estimated dimensionu. Variationassociated with modelselection is thereforenotconsideredin the current envelopeparadigm. In this article, we propose a weighted envelope estimator of β that smooths out model selection volatility. The weighting is across all possible envelope models under (1). The weights corresponding to each envelope estimatorarefunctionsoftheBayesianInformationCriterion(BIC)valuecorrespondingtothatparticularenvelope model. Weighting in this manner is similar to the model averaging techniques discussed by Buckland,etal. 1 (1997)andBurnhamandAnderson(2004)whoprovidedaphilosophicaljustificationfortheuseofsuchweighted estimatorswithoutgivinganytheoreticalproperties. HjortandClaeskens(2003)andLiang,etal.(2011)builton theframeworkofBuckland,etal.(1997)andBurnhamandAnderson(2004)byderivingtheasymptoticproperties forweightedestimatorsofgeneralizedlinearregressionparameterswithweightingconductedacrosssubmodels underconsideration. 2 The Envelope Model Theoriginalmotivationforenvelopemethodologycomesfromtheobservationthat,inthemultivariateregression model(1),somelinearcombinationsofY mayhaveadistributionthatdoesnotdependonX,whileotherlinear combinationsofY dodependonX. TheenvelopemodelseparatesouttheseimmaterialandmaterialpartsofY, andtherebyallowsforefficiencygains(Cook,etal.,2010;SuandCook,2011). Morecarefully,supposethatwecanfindasubspaceS ⊆Rr sothat QSY⊧PSY X, and QSY X =x1∼QSY X =x2, forall x1,x2, (2) ∣ ∣ ∣ where∼meansidenticallydistributed,P projectsontothesubspaceindicatedbyitsargumentandQ=I −P. (⋅) r ForanyS withtheproperties(2),P Y carriesallofthematerialinformationandperhapssomeoftheimmaterial S information,whileQ containsjustimmaterialinformation.LetB=span β . Then(2)holdsifandonlyifB⊆S S ( ) andΣ=ΣS +ΣS⊥,whereΣS =var PSY andΣS⊥ =var QSY . Theenvelopeisdefinedastheintersectionof ( ) ( ) allsubspacesS thatsatisfy(2)andisdenotedbyE B withdimensionu=dim E B . Σ Σ ( ) { ( )} The envelopemodelcan be representedin terms of coordinatesby parameterizingmodel(1) to incorporate conditions (2). Define Γ ∈ Rr×u to be a semi-orthogonal basis matrix for E B and let Γ ∈ Rr×(r−u) be a Σ o ( ) completionofΓsothat Γ,Γ ∈Rr×r isanorthogonalmatrix. Thentheenvelopemodelwithrespecttomodel o ( ) (1)isparameterizedas Y =α+ΓηX+ε, ε∼N 0,Σ , (3) ( ) where Σ = ΓΩΓT +Γ Ω ΓT, Ω ∈ Ru×u and Ω ∈ R(r−u)×(r−u) are positive definite, and η ∈ Ru×p is β in o o o o the coordinates of Γ. We see from (3), that E B links the mean and covariance structures of the regression Σ ( ) problem and it is this link that provides the efficiency gains. The gains can be massive when the immaterial informationislargerelativetothematerialinformation;forinstance,when Ω Ω , where isamatrix o ∥ ∥≪ ∥ ∥ ∥⋅∥ norm(Cook,etal.,2010).Anilluminatingschematicshowinghowanenvelopeincreasesefficiencywasgivenby SuandCook(2011). Candidateenvelopeestimators of β at dimensionj and sample size n, denotedβˆ , are foundvia maximum j likelihoodestimationofmodel(3)withβˆ = Γηˆ. Theenvelopeestimatorofβ isfoundbycomparingallcandi- j ̂ dateenvelopeestimatorsusingamodelselectioncriterionsuchas BIC, orlikelihoodratiotestsorperhapscross validation. The estimated dimension, uˆ, obtained from any one of these selection criteria is a variablequantity dependentontheobserveddata. Traditionalenvelopemethodologydoesnotaddressthisextravariability. Inthe nextthreesections,wedevelopnewenvelopemethodologythattakesthisextravariabilityintoaccount. 2 3 BIC Weighted Estimators Wedevelopasolutiontotheproblemofpotentialvolatilityinenvelopemodelselectionbybuildingontheideas inBuckland,etal.(1997)andBurnhamandAnderson(2004),whosuggestedcombiningestimatorsoverdifferent models by weighting. Bootstrapping was then suggested for stochastic weighting schemes, but no theoretical propertiesweregivenbytheauthors. Weconsiderweightedestimatorsoftheform r βˆ = w βˆ , (4) w j j ∑ j=1 where∑rj=1wj =1andwj ≥0,forj =1,...,r. Theweightswj dependontheBIC valuesforallofthecandidate envelopemodelsunderconsideration. Letthe BIC valuefortheenvelopemodelwithdimensionj bedenotedby b = 2l βˆ k j log n ,wherel βˆ istheloglikelihoodevaluatedattheenvelopeestimatorβˆ andk j is j j j j − ( )+ ( ) ( ) ( ) ( ) thenumberofparametersoftheenvelopemodelofdimensionj.Theweightsforenvelopemodeljareconstructed as exp b j wj = ∑r e(x−p )b . (5) k=1 (− k) It follows from the Supplement that βˆw is a √n-consistent estimator of β, but assessing the variance of βˆw is notso raightforward. In the nextsection we show that the residualbootstrapprovidesa consistentestimator of var βˆ . w ( ) SimilarweightscorrespondingtoAkaike’sInformationCriterion(AIC)donothavetheniceasymptoticprop- erties that weights corresponding to BIC enjoy. In particular, analogous AIC weight at j = u is not guaran- teed to converge to 1 asymptotically. Additionally, the weights in (5) differ slightly from those mentioned in BurnhamandAnderson(2004)whichwerealsoadvocatedbyKassandRaftery(1995)andTsague(2014).These weightsareoftheform exp b 2 j w˜j = ∑r e(x−p /b)2 (6) k=1 (− k/ ) andtheycorrespondtoanapproximationoftheposteriorprobabilityformodeljgiventheobserveddataunderthe priorwhichplacesequalweightforallcandidatemodels.Weightsoftheform(6)donothavethesameasymptotic propertiesastheweightsgivenby(5). AmorethoroughdiscussionofthisisgivenafterTheorem1. ˆ 4 Bootstrap for β w Theresidualbootstrapusedtoestimatethevariabilityfortheenvelopeestimatoratthetruedimensionuusesthe starredresponses, Y =XβˆT ε , (7) ∗ u ∗ + to obtain βˆ , where X ∈ Rn×p is the fixed design matrix with rows X and the rows of ε are the realizations u∗ i ∗ ofnresamplesoftheresidualsfromtheoriginalmodelfitwithreplacement. Theenvelopeestimatorβˆu is√n- consistentandasymptoticallynormal(Cook,etal.,2010;CookandZhang,2015). Thetechniquesusedtoverify theconsistencyandasymptoticnormalityofβˆ requiretheasymptoticsofextremumestimationasinAmemiya u 3 (1985, Theorems4.1.1-4.1.3). The setup in Andrews (2002, Section 2 pgs. 122-124and Theorem 2) confirms thattheresidualbootstrap,withresponses(7),providesa√n-consistentestimatoroftheasymptoticvariabilityof βˆ . Theproblemwiththisapproach,asitcurrentlystands,isthatuisunknown. Thecurrentimplementationof u theresidualbootstrapimplicitlyassumesthatuˆ =uwhereuˆisobtainedviasomeselectioncriterion. Therefore, variabilityintroducedbymodelselectionuncertaintyisignored.Thisissueisresolvedbyusingβˆ inplaceofβˆ w u in(7). Thenexttheoremformalizesourasymptoticjustificationfortheuseoftheweightedenvelopeestimatorβˆ w inpracticalproblems.ItsproofisgivenintheSupplement. Theorem1. Assume the regression model(1) andsupposethatan envelopesubspaceof dimensionu = 1,...,r exists. Assumethat 1XTX→Σ >0. Letβˆ betheweightedenvelopeestimatorofβ definedin(4)andletβˆ n X w w∗ betheweightedenvelopeestimatorofβ obtainedfromresampleddata.Then,asntendsto , ∞ √n vec βˆ vec βˆ =√n vec βˆ vec βˆ w∗ w u∗ u { ( )− ( )} { ( )− ( )} (8) O n(1/2−p) 2 u 1 O 1 √ne−n∣Op(1)∣. p p + { }+ ( − ) ( ) Theorem1showstheutilityoftheweightedenvelopeestimatorβˆ . In(8),weseethatasymptoticdistribution w of the residual bootstrap with respect to βˆ is the same as the asymptotic distribution of the residual bootstrap w atβˆ ,theenvelopeestimatoratthetruedimension. Thedifferencebetweenthetwobootstrapproceduresisthat u thebootstrapgiveninTheorem1doesnotrequiretheconditioningonuˆasaprerequisiteforitsimplementation. Weinsteadbootstrapwithrespecttoatangibleestimatorthatdoesnotignorekeyelementsofvariabilitythatare apparentinpracticalproblems. Theordersin(8)resultfrommodelselectionvariabilitythatarisesfromfoursources.TheOp n(1/2−p) term { } correspondstotherateatwhich√nwj and√nwj∗ vanishforj =u 1,...r. Thisrateisacostofoverestimation + oftheenvelopespace. Itdecreasesquitefast,particularlywhenpisnotsmall,becausemodelswithj >uaretrue andthushavenosystematicbiasduetochoosingthewrongdimension. The2 u 1 √ne−n∣Op(1)∣ termcorrespondstotherateatwhich√nwj and√nwj∗ vanishforj = 1,...,u ( − ) − 1. This rate arises from under estimating the envelope space and it is affected by systematic bias arising from choosingthewrongdimension. Togainintuitionaboutthisrate,letB = GTΣG −1/2GTβΣ1/2,whereG ∈ j ( o o) o X o Rr×(r−j)isthepopulationbasismatrixforthecomplementoftheenvelopespaceofdimensionj. Thisquantityis astandardizedversionofGTβ thatreflectsbias,sinceGTβ ≠0whenj <u,butGTβ =0whenj ≥u. LetB o o o ̂j,n denotethe√n-consistentestimatorofBj obtainedbyplugginginthesampleversionofΣX andtheestimatorsof G ,Σandβ thatarisebymaximizingthelikelihoodwithdimensionj<u. Thenthe n O 1 termappearing o p − ∣ ( )∣ intheexponentof2(u−1)√ne−n∣Op(1)∣istherateatwhich−nlog(∣Ip+B̂jT,nB̂j,n∣)approaches−∞. Additionally, thistermis0whenu=1. Thatarisesbecauseweconsideronlyregressionsinwhichβ ≠0andthusu≥1. When u=1underestimationisnotpossibleinourcontextandthus2 u 1 √ne−n∣Op(1)∣vanishes. ( − ) We now revisit the origins of construction of the weights used in Theorem 1. In Section 3, we mentioned thatourconstructionissimilarto,butnotthesameas,thosementionedinBurnhamandAnderson(2004). Inthe case when p = 1, the term √nw˜j=u+1 defined by (6) does notvanish as n → ∞. We thereforewould not have the same asymptotic result given by (8) in Theorem 1. Instead, there would be non-zero weight placed on the 4 envelopemodelwithdimensionj =u 1asymptotically. Thisweightingschemewouldthereforeleadtohigher + estimatedvariabilitythanisnecessaryinpractice.However,thisissueisnolongerproblematicwhenp>1.When p > 1,theweights(6)canbeusedandchangesto(8)wouldresult. TheOp n1/2−p termin(8)wouldbecome { } Op n(1−p)/2 whentheweights(6)areusedinplaceoftheweights(5). Whenpislarge,onemayproceedwith { } weightingaccordingto(6)atrelativelylittlecosttoefficiency. 5 Examples We now provide examples which show that our weighted envelope estimator performsbetter than the standard estimator and favorably with other envelope estimators at reasonable values of u. The first two are simulated examples in which we know β, Σ, u, and P . Their role is only to illustrate the theory developed in the EΣ(B) previoussections. Thethirdexampleisarealdataexampleinwhichwedonotknowanyquantitiesofinterest. 5.1 Simulated examples Example1: Forthisexample,wecreateasettinginwhichY ∈R3isgeneratedaccordingtothemodel ind Y =β X ε , ε ∼ N 0,Σ , (9) i i i i i + ( ) i = 1,...,n, whereX ∈ R2 isacontinuouspredictorwithentriesgeneratedindependentlyfroma normaldistri- i butionwithmean4andvariance1. ThecovariancematrixΣwasgeneratedusingthreeorthonormalvectorsand haseigenvaluesof50,10,and0.01. Thematrixβ ∈ R3×2 isanelementinthespacespannedbythesecondand third eigenvectorsof Σ. We know that the dimensionof E B is u = 2. Three datasets were simulated using Σ ( ) model (9) at different sample sizes, as given in Table 1. The multivariate residual bootstrap was then used to comparetheefficienciesofourweightedenvelopeestimatorβˆ totheoracleenvelopeestimatorβˆ . Theratios w u=2 ofbootstrappedestimatedstandarderrorsbetweenbothenvelopeestimatorstothoseofthemaximumlikelihood estimator(MLE)fromthefullmodel,se βˆr se∗ βˆw ,areseeninTable1. Ratiosgreaterthan1indicatethatthe ( )/ ( ) envelopeestimatorismoreefficientthanthestandardestimator. Therearetwoconclusionsthatareapparentfrom Table1. Weseethatenvelopeestimationismoreefficientthantheestimationusingthefullmodelandweseethat theefficiencyoftheweightedenvelopeestimatorapproachesthatoftheoracleestimator,βˆ ,asnincreases. u=2 Example2: Forthisexample,weillustratetheeffectthatphasontheperformanceoftheweightedenvelope estimator. We generateddata accordingto model(9) with Y ∈ R5. In this example u = 1 and Σ is compound symmetricwithdiagonalentriessetto1andoff-diagonalentriessetto0.5,β =1 cT,where1 isther 1vector r p r × ofones,c isap 1vectorwhereeveryentryis10.WegeneratethepredictorsaccordingtoX ∼N 0,I ,where p p × ( ) I isthep-dimensionalidentitymatrix. Wesetn=250. p The results of our simulation study are seen in Table 2. For each value of p that is considered, we display the number of estimated dimensions uˆ as determined by BIC . From Table 2, we see that the distribution of uˆ approachesa point mass at the truth as p increases. This implies that the bias terms in Theorem 1 vanish as p increasesjustas(8)states. 5 n=250 n=500 n=2000 βˆ βˆ βˆ βˆ βˆ βˆ w u=2 w u=2 w u=2 1.88 2.40 2.34 2.98 2.71 2.81 1.39 1.79 1.65 1.78 1.79 1.81 2.67 3.60 2.57 3.52 3.51 3.71 2.33 2.66 2.18 2.99 2.67 2.79 1.87 1.86 1.67 1.81 1.73 1.77 3.39 3.75 2.52 3.70 3.36 3.74 Table 1: Ratios of estimated standard errors obtained from the multivariate residual bootstrap for a different numberofsamplesizesn. n uˆ=1 n uˆ=2 n uˆ=3 ( ) ( ) ( ) p=2 128 111 11 p=5 214 34 2 p=10 249 1 0 p=25 250 0 0 Table2: SimulationresultsforExample2. 5.2 Cattledata Thedataforthisillustrationresultedfromanexperimenttocomparetwotreatmentsforthecontrolofanintestinal parasite in cattle: thirty animals were randomly assigned to each of the two treatments and their weights (in kilograms)wererecordedatweeks2,4,...,18and19aftertreatment(Kenward,1987). Becauseofthenatureofa cowsdigestivesystem,thetreatmentswerenotexpectedtohaveanimmediatemeasurableaffectonweight. The objectivesofthestudyweretofindifthetreatmentshaddifferentialeffectsonweightand,ifso,aboutwhenwere theyfirstmanifested.Webeginbyconsiderthemultivariatelinearmodel(1),whereY ∈R10isthevectorofcattle i weightsfromweek2toweek19,andthebinarypredictorX iseither0or1indicatingthetwotreatments. Then i α =E Y X =0 isthemeanprofileforonetreatmentandβ = E Y X = 1 E Y X =0 isthemeanprofile ( ∣ ) ( ∣ )− ( ∣ ) differencebetweentreatments. Turningtoa fitoftheenvelopemodel(3), likelihoodratiotestingselectsuˆ = 1 and BIC selectsuˆ = 3asthe dimensionoftheenvelopemodel.Furthercomplicatingmatters,whenBICisusedtodetermineuateveryiteration ofthemultivariateresidualbootstrap,weseehighvariabilityinmodelselectionasseeninTable3. FromTable3, itappearsthatthetruedimensionoftheenvelopesubspaceisanywherefrom1to5withthehighestlikelihoodthat itisbetween2and4. Modelselectionvolatilityofthisvarietyispreciselythereasonwhytheweightedenvelope estimatorisadvocated;itwouldnotbesafetoperformabootstrapprocedurethatmakesauniformselectionofa particulardimensionateveryiteration.SuchaprocedureignoresthemodelselectionvariabilityseeninTable3. FromTable4,weseetheratiosofbootstrappedestimatedstandarderrorsbetweenbothenvelopeestimatorsto 6 thoseoftheMLEfromthefullmodel,se βˆr se∗ βˆw . Ratiosgreaterthan1indicatethattheenvelopeestimator ( )/ ( ) is more efficient than the standard estimator. We see that βˆ is comparable to βˆ . Similar conclusions are w u=3 drawn from the other elements of estimates of β. The findings displayed in Table 4 show that the weighted envelopeestimatorcanprovideusefulefficiencygainswhileprotectingagainstunderestimationofuthatmaynot beproperlyaccountforbythestandardenvelopeestimator. uˆ 1 2 3 4 5 n uˆ 10 10 24 12 4 ( ) Table3: Countsoftheselectedenvelopedimensionateveryiterationofa multivariateresidualbootstrapfor60 resamples. d B βˆ βˆ βˆ βˆ βˆ βˆ w u=1 u=2 u=3 u=4 u=5 5 60 1.93 4.65 3.89 1.85 1.54 1.27 100 1.38 3.97 1.49 1.14 1.14 1.07 200 1.62 4.26 3.14 1.69 1.32 1.19 500 1.61 4.58 2.43 1.59 1.29 1.15 1000 1.56 4.10 2.48 1.55 1.29 1.15 2000 1.57 4.43 2.30 1.53 1.28 1.16 6 60 1.75 2.30 2.35 1.79 1.38 1.24 100 1.25 2.15 1.26 1.05 1.05 1.00 200 1.50 2.27 2.47 1.55 1.20 1.11 500 1.50 2.22 2.05 1.55 1.24 1.10 1000 1.52 2.24 1.99 1.48 1.26 1.14 2000 1.53 2.32 1.91 1.46 1.26 1.16 Table4:Ratiosofestimatedstandarderrorsobtainedfromthemultivariateresidualbootstrapatadifferentnumber ofresamplesB forthefifthandsixthelements(indicatedbythedcolumn)ofestimatesofβ. 6 Discussion Efron (2014) proposed an estimator motivated by bagging (Breimen, 1996) that aims to reduce variability and smoothoutdiscontinuitiesresultingfrommodelselectionvolatility. Variabilityofthemodelaveragedestimator ofEfron(2014)isassessedviaadoublebootstrap.Thesetechniqueshavebeenappliedtoenvelopemethodology in Eck,etal. (2016) and usefulvariancereductionwas foundempirically. Theproblemof interestin Eck,etal. (2016) falls outside the scope of the multivariate linear regression model, and general envelope methodology (CookandZhang,2015)wasrequiredtoobtainefficiencygains.Inthecontextofthemultivariatelinearregression model, we show that only a single level of bootstrappingis necessary to assess the variability of our weighted 7 envelopeestimator and that bootstrappingin this way guaranteesa consistentestimator of the variability of the weightedenvelopeestimator. 7 Supplementary material SupplementarymaterialavailableatBiometrikaonlineincludestheproofofTheorem1. References Amemiya,T.(1985). AdvancedEconometrics. HarvardUniversityPress,Cambridge,MA. Andrews, D. W. K. (2002). Higher-Order Improvementsof a Computationally Attractive k-Step Bootstrap for ExtremumEstimators. Econometrica,70,1,119-162. Breiman,L.(1996). BaggingPredictors. MachineLearning,24,123–140. Buckland, S. T., Burnham, K. P., and Augustin, N. H. (1997). ModelSelection: An IntegralPart of Inference. Biometrics,53,603–618. Burnham,K.P.,Anderson,D.R.(2004).MultimodelInference.SociologicalandMethodsResearch,33,261–304 Cook,R.D.,Li,B.,Chiaromonte,F.(2010). Envelopemodelsforparsimoniousandefficientmultivariatelinear regression. StatisticaSinica,20,927–1010. Cook,R.D.,Forzani,L.,andSu,Z.(2016). Anoteonfastenvelopeestimation. J.Mult.Anal.,150,42–54. Cook,R.D.,Zhang,X.(2015). FoundationsforEnvelopeModelsandMethods. J.Am.Statist.Assoc.,110:510, 599–611. Eck,D.J.,Geyer,C.J.,andCook,R.D.(2016). AnApplicationofEnvelopeandAsterModels. Submitted. Efron,B.(2014). EstimationandAccuracyAfterModelSelection. J.Am.Statist.Assoc.,109:507,991–1007. Hjort, N. L. and Claeskens, G. (2003). Frequentist Model Average Estimators J. Am. Statist. Assoc., 98:464, 879–899. Kass,R.K.andRaftery,A.E.(1995). BayesFactors J.Am.Statist.Assoc.,90:430,775–795. Kenward, M. G. (1987). A methodfor comparingprofilesof repeated measurements. J. R. Statist. Soc. C, 36, 296–308. Liang,H.,Zou,G.,Wan,A.T.K.,andZhang,X.(2011). OptimalWeightChoiceforFrequentistModelAverage Estimators J.Am.Statist.Assoc.,106:495,1053–1066. Su, Z. and Cook, R. D. (2011). Partial envelopes for efficient estimation in multivariate linear regression. Biometrika,98,133–146. 8 Tsague,G.N.(2014). OnOptimalWeightingSchemeinModelAveraging. AmericanJournalofAppliedMathe- maticsandStatistics,2,No.3,150–156. 9 ‘Supplementary material for Weighted envelope estimation to handle vari- ability in model selection’ ThisSupplementaryMaterialssectioncontainstheproofofTheorem1inEckandCook(2017). Proof. Wegothroughthestepsshowingthat(8)inEckandCook(2017)holds. Recallthatu=dim E . Define ( ) l βˆ tobetheloglikelihoodoftheenvelopemodelevaluatedattheenvelopeestimatorβˆ ,fittingwithdim E =j, j j ( ) ( ) anddefinek j tobethenumberofparametersoftheenvelopemodelofdimensionj. Fromtheconstructionof ( ) b andtheabovecalculationsweseethat j ebu−bj =e−2{l(βˆu)−l(βˆj)}n−{k(j)−k(u)}. Letb∗j betheBICvalueoftheenvelopemodelofdimensionjfittothestarreddataanddefine e−b∗j w = . j∗ ∑rk=1e−b∗k Let betheEuclideannorm.Weshowthat√n wj∗vec βˆj∗ wjvec βˆj →0forj ≠ubyshowingthat ∥⋅∥ { ( )− ( )} √n w vec βˆ w vec βˆ ≤ √n w vec βˆ √n w vec βˆ → 0 j∗ j∗ j j j∗ j∗ j j ∥ ( )− ( )∥ ∥ ( )∥+ ∥ ( )∥ asn→ forallj ≠u. Now, ∞ √nw vec βˆ ≤√n O 1 ebu−bj j j p ∥ ( )∥ ∣ ( )∣ = O 1 n{k(u)−k(j)+1/2}e−2{l(βˆu)−l(βˆj)} (10) p ∣ ( )∣ = O 1 n{k(u)−k(j)+1/2}e2{l(βˆr)−l(βˆj)}−2{l(βˆr)−l(βˆu)}. p ∣ ( )∣ The first inequalityin (10) followsfromthe factthat vec βˆ ≤ vec βˆ and vec βˆ = O 1 . We first j r r p ∥ ( )∥ ∥ ( )∥ ∥ ( )∥ ( ) considerthecasewherej=u 1,...,r. Inthissetting,modelswithenvelopedimensionsuandjarebothtrueand + nestedwithinthefullmodelwithenvelopedimensionr. Consequently, 2 l βˆ l βˆ and 2 l βˆ l βˆ u r j r − { ( )− ( )} − { ( )− ( )} are asymptotically distributed as χ2p(r−u) and χ2p(r−j) by Wilks’ Theorem. Therefore e−2{l(βˆu)−l(βˆj)} = Op(1) sinceitistheexponentiationofthedifferencebetweentwoχ2randomvariables.Weseethat √nw vec βˆ ≤ O 1 n{k(u)−k(j)+1/2} =O n{k(u)−k(j)+1/2} . j j p p ∥ ( )∥ ∣ ( )∣ [ ] Sincej >u,wehavethatk u k j =p u j ≤ p. Thus, ( )− ( ) ( − ) − √nw vec βˆ ≤O n(1/2−p) j j p ∥ ( )∥ { } forj=u 1,...,r. Followingthesamestepsas(10),appliedtothestarreddata,yields + √nwj∗ vec βˆj∗ ≤ Op 1 n{k(u)−k(j)+1/2}e−2{l∗(βˆu∗)−l∗(βˆr∗)}+2{l∗(βˆj∗)−l∗(βˆr∗)} (11) ∥ ( )∥ ∣ ( )∣ where l is the log likelihood function corresponding to the starred data. Both 2 l βˆ l βˆ and ∗ ∗ u∗ ∗ r∗ (⋅) − { ( )− ( )} 2 l βˆ l βˆ in(11)areO 1 . Thus, { ∗( j∗)− ∗( r∗)} p( ) √nw vec βˆ ≤ O 1 n{k(u)−k(j)+1/2} =O n{k(u)−k(j)+1/2} , j j∗ p p ∥ ( )∥ ∣ ( )∣ [ ] 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.