ebook img

Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for ... PDF

16 Pages·2017·8.47 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for ...

informa t ics Article Web-Based Scientific Exploration and Analysis of 3D Scanned Cuneiform Datasets for Collaborative Research DenisFisseler1,∗,GerfridG.W.Müller2andFrankWeichert1 1 DepartmentofComputerScienceVII,TUDortmundUniversity,44227Dortmund,Germany; [email protected] 2 DepartmentofAncientCultures,AncientNearEasternStudies,UniversityofWürzburg, 97070Würzburg,Germany;[email protected] * Correspondence:denis.fi[email protected] AcademicEditor:RobertoTherónSánchez Received:8November2017;Accepted:9December2017;Published:12December2017 Abstract: Thethree-dimensionalcuneiformscriptisoneoftheoldestknownwritingsystemsanda centralobjectofresearchinAncientNearEasternStudiesandHittitology. Animportantsteptowards theunderstandingofthecuneiformscriptistheprovisionofopportunitiesandtoolsforjointanalysis. This paper presents an approach that contributes to this challenge: a collaborative compatible web-basedscientificexplorationandanalysisof3Dscannedcuneiformfragments. TheWebGL-based conceptincorporatesmethodsforcompressedweb-basedcontentdeliveryoflarge3Ddatasetsand highqualityvisualization. Tomaximizeaccessibilityandtopromoteacceptanceof3Dtechniques inthefieldofHittitology,theintroducedconceptisintegratedintotheHethitologie-PortalMainz, anestablishedleadingonlineresearchresourceinthefieldofHittitology,whichuntilnowexclusively included2Dcontent. Thepapershowsthatincreasingtheavailabilityof3Dscannedarchaeological datathroughaweb-basedinterfacecanprovidesignificantscientificvaluewhileatthesametime findingatrade-offbetweencopyrightinducedrestrictionsandscientificusability. Keywords: cuneiform;3Dviewer;WebGL;Hittitology;3Dcollation 1. Introduction Recent advances in 3D scanning technology have led to increased efforts to create digital reproductionsofarchaeologicalartifactssuchascuneiformtabletfragments,asshowninFigure1, resulting in large databases of high-resolution 3D meshes [1]. However, the existence of these 3D data-repositoriesdoesnotresulttothesameextentinanincreasedavailabilityofthedataforassociated researchpurposes. Therefore,accessibilitytothescientificcommunityisanongoingissuewithlarge scale archaeological data-repositories. The reasons for this accessibility gap range from legal and political issues, tied to the copyright on the data and data preparation times/costs, to technical challenges regarding visualization and transfer of large amounts of data [2]. As will be detailed lateron,anincreasingamountofweb-based3Dlibrariesandefficient3Dcontenttransfertechniques becomesavailable,whichleadstoanincreasingamountof3Ddigitalheritagecontentpresentedin theweb. Thenon-research-orientedpresentationobjectivesinmanyoftheseprojectsresultinahigh suitabilityformuseumpresentationbutatthesametimeinaverylimitedsuitabilityforscientific metrologicalanalysis. Occurringrestrictionsregardingthescientificusemayoriginatefromfactors suchaslowscanortextureresolution,missingmeasurementandlightingtools,restrictedviewport navigation, insufficient shading capabilities for enhancing subtle features on untextured datasets andsoftware/datalicensingincompatibilities. Astherequirementstothedataanditspresentation Informatics 2017,4,44;doi:10.3390/informatics4040044 www.mdpi.com/journal/informatics Informatics 2017,4,44 2of16 varydependingonthefieldofresearch,Section2willintroducetheusecaseofcuneiformfragment collation with a specific set of traditional research methods and requirements to be targeted in a scientifically oriented 3D cuneiform framework. This set of requirements will then be used in the courseofSection3toconstructasuitable3Dframeworkforweb-basedanalysisofcuneiformscript. TheaspectstobecoveredincludethechoiceofaWebGL(WebGraphicsLibrary)environment,analysis of3Dcuneiformdatacharacteristicsandpreparation,visualizationandanexemplaryintegrationinto anestablishedonlineresearcharchitectureinSection4. ThesubsequentevaluationinSection5shows that,fortheapplicationscenarioofweb-based3Dcuneiformscriptanalysis,atrade-offbetweenlegal andcopyrightaspectsononesideandfreeavailabilityandscientificusabilityontheothersidecan befoundtogenerateaddedscientificvalue. Thepapercloseswithashortconclusionandanoutlook regardingfurtherresearchinSection6. (a) (b) (c) Figure1. Examplesofcommoncuneiformrepresentations. Anautographyofcuneiformfragment 262/pisshownin(a),withacorrespondingphotographicdocumentationin(b)andavisualizationofa 3Dscanin(c).Source:[3]. 2. CuneiformFragmentCollation Cuneiformscriptis,asidefromEgyptianhieroglyphs,oneoftheoldestknownwritingsystems[2]. Itwasusedforoverthreemillenniastartingwithitsinventionaround3500BCEinAncientNearEast byavarietyofculturesliketheSumerians,theBabylonians,theAkkadians,theElamites,theAssyrians and the Hittites. In contrast to modern scripts, cuneiform manuscripts were usually created by imprinting an angular stylus into tablets of moist clay resulting in small and often overlapping tetrahedron shaped grooves, which makes cuneiform a three-dimensional script. Most known remainsofcuneiformmanuscriptshavebeenpreservedinformof(inmanycasesfragmented)clay tablets,withaquantityofover500,000discoveredartifacts,storedmostlyinmuseumcollections[1]. Asidefrommuseumpresentation,thesecuneiformfragmentsaresubjecttoscientificresearchinthe fieldofAncientNearEasternStudies. Basedonthedeciphermentofcuneiformscript,thefragments areanalyzedandtranslatedinordertoreassemblethemanuscriptsandextendourknowledgeofthis partofhumanhistory. Inphilology,includingAncientNearEasternStudiesofcuneiformfragments,collationdenotes theverificationofatextagainstanoriginalasacentralresearchmethod. Thisincludes,amongstother things,theverificationoftranscriptionsandtransliterations. Ideally,“original”referstotheoriginal manuscript in the form of a real cuneiform tablet or fragment. However, accessibility issues and artifactcorrosionoftenresultinthereplacementoftheoriginalartifactbyhandcopies,photographic reproductions and, recently, 3D scanned digital reproductions. Some examples for these types of reproductionsareshowninFigure1. Thefollowingwilldetailsomeessentialcollation-relatedaspects tobeconsideredduringthedevelopmentofsuitableweb-basedaccessmethods. Informatics 2017,4,44 3of16 2.1. ApplicationScenarios Despite very individualistic philological working methods and work flows, some typical applicationscenariosforcollationtaskscanbeidentified. Oneofthesescenariosistheinspection of transliterations for missing signs and text lines, which frequently occur, especially on larger or difficulttoreadmanuscripts. Thisincludescheckingwhetherthesignscanbereadasspecifiedinthe transliteration. Anotherreasonforconductingacollationarewell-foundeddoubtsaboutthecorrect readingoftextpassagesorsigns. Inthiscontext,collationcanoperateonamoresemanticlevelto determinehowthesigns,consistingofidentifiedwedges,mustbereador,onamoregeometry-oriented level, to determine what wedges can be found on the artifact and which signs can be derived. The second case is particularly important regarding damaged text passages and gaps. Resolving thesekindsofgeometricissuesincludescheckingwhetherthecomplementedsignshavethecorrect sizewithrespecttocomparablesignsonthesametablet. Additionally,theremaininggeometricclues arecheckedagainstthegeometryofcomplementedsignsandpossiblesignalternatives,whichare thenvalidatedregardingthetextualandpaleographiccontext. 2.2. CollationofVariousMediaTypes Forcollationpurposes,arealartifactisusuallyviewedfromdifferentanglestoestimatewedge depthsandsurfacedistancesofdamagedareas. Thishelpswithdistinguishingscratchesandfracture facesfromremainsofcuneiformwedges. Thistechniqueisinmostcasescomplementedbyusinga lightsourcetoenhancetheperceptibilityofgeometricfeaturesbyshadowcasting. Asidefromthe depthofgrooves,thesurfacefinishcanhelpwiththedifferentiationofscratchesandwedges. Itcanbe determinedtoalimitedextendbyemployingamagnifyingglass. Anadditionalfrequentissueinthis regardisthepresenceofnon-uniformcoloredsurfacetexturesontheartifacts,whichcanexertahuge negativeeffectonthevisualperceptibilityofgeometricfeatures. Capability-wise,collationonrealartifactscanassessthegeometricshapebychangingviewing directionandshadowcastingusingalightsource. Thesurfacefinishcanhelpwithdistinguishing scratchesandwedges. However,duetotheverysmallwedges,mostgenuinecuneiformartifactsare notaccessibletomanual,damage-freemeasurements. Additionally,non-uniformsurfacetexturesare anissueduringgeometricanalysis. Collation of photographic reproductions, on the other hand, enables non-depth related measurements using image magnification, while the fixed camera position and lighting setup complicatesdepthrelatedmeasurements. Rudimentarydepthperceptionissolelypossiblebasedona staticshadow-castinglightsetup. Theeffectsofthelightingsetupare,however,inmanycasesnot separablefromeffectscausedbysurfacetexturecolorandtone-mappingorexposurerelatedissuesof theutilizedphotographicsetup. Asopposedtothetwopreviously-mentionedcollationmedia,collationon3Dscannedmodels providesdamagefreeaccesstoprecise3Dmeasurementsincludingdepthvalues,whichisespecially importantascuneiformscriptisathree-dimensionaltypeofscript. Asidefromthat,3Dmodelscan beviewedfromalldirectionsandwitharbitrarylightingsetups,whichalsoincludeshighpossible levelsofmagnification. Anadditionaladvantageistheseparabilityofgeometryandsurfacetexture. Thisallowstheexaminationofgeometricfeatureswithoutobstructionsfromnon-uniformsurface colors.Regardingcollaborativecollationtasks,3Dscannedcuneiformdatabenefits,interalia,fromdata mobility, reproducible viewing conditions and the conservation of the artifact state. A suitable 3Dframeworkshouldthereforeprovideinteractivevisualization,flexibleviewportnavigationand lightmanipulation,featureenhancedrenderingofuntexturednon-2-manifoldmodelsandprecise measurementtools,aswellasfeaturesforcollaborativeresearch. Table 1 shows a comparison of collation accessibility features for real artifacts, photographic reproductionsand3Dscans. Inthiscontext,representationcompletenessratesthepossibleamount ofdataofagoodreproductioncomparedtotheoriginalartifactatthetimeofitscreation. Itisan importantfactthatatagiventimetheoriginalartifactdoesnotnecessarilycontainthemostcomplete Informatics 2017,4,44 4of16 data as corrosion based damage may have degraded the quality of the original artifact after the fabricationofananalogordigitalreproduction. Thismayrenderanoldphotographyora3Dscan themostcompletedatasourceeventhoughphotographsmaybeofbadqualityand3Dscansmay onlycoveranincompletesubsetoftheartifactsurface. ThedatasizesinTable1refertotypicaldata setsizesontheHethitologie-PortalMainz[3]. Itisworthmentioningthatmeasurementprecisionon photographsisusuallysuperiortotheoriginalartifactbecauseofthepossibleimagemagnification. However,imagesareaffectedbyprojectivedistortions,exposureandlightingissuesaswellasvisually non-separabletexturecolors. Table1.Collationaccessibilityfeaturesondifferenttypesoforiginalmedia. Aspect RealObject Photography 3DScan lighting variable fixed variable viewingdirection variable fixed variable measurements x,y x,y x,y,depth manualmeasurementprecision − + ++ separabletexturecolors (cid:55) (cid:55) (cid:51) accessibility realworldfixedlocation web-based web-based datasize realobject medium large representationcompleteness corrosiondependent + + 3. MethodsforWeb-BasedVisualizationof3DCuneiformData This section will present an interactive web-based approach for the analysis of 3D scanned cuneiform data, to address the use case of cuneiform fragment collation, described in Section 2. TheresultwillusetheNexusformatinaThree.js-basedvisualizationenvironmentextendedwithhigh qualityvisualizationmethodsandapplicationscenariospecifictoolsforcuneiformcollationtasksin theHethitologie-PortalMainz. Startingwithareviewofrelatedwork,thissectionwillthereforedetail thecomponentsofaViewerconceptasshowninFigure2. Section3.2willdiscusscuneiformdata characteristicstomotivatetherequireddatapreparationprocess. Theemployedvisualizationmethods willbepresentedinSection3.3,followedbyadescriptionofthedesignofasuitableuserinterfacein Section3.4. AspectsoftheintegrationontheserverwillbecoveredinSection4. Figure2.Outlineoftheviewerconcept.Thedatapreparationstepextendsthescandataandperforms theconversiontothenexusformat. Theserverhoststhenexusfiles,deliversobstructeddataand performsaccesscontrol.TheWebGLclientisresponsiblevor3Dvisualizationandprovidingauser interface. Sharingviewsandscreenshotsaremanualcollaborativefeaturesforexchangebetween multipleWebGLclients. 3.1. RelatedWork An easy to use 3D web application should be based on a readily available and wide-spread 3D API without the need to install any third party plugins. WebGL is a JavaScript 3D API with native integration in all modern browsers that satisfies these needs. Although WebGL 1.0 [4] is based on OpenGL ES 2.0 [5], some features widely used in desktop OpenGL environments are Informatics 2017,4,44 5of16 only available in the form of WebGL extensions with varying degree of support by the browsers. Especiallymobiledevicebrowserslacksomewidelyusedextensionsbecauseofhardwarerelated incompatibilities. TofacilitatemanybasicandreoccurringWebGLtasks,likeloadingshadersand 3D models, the use of high level WebGL libraries is common. In particular, open source libraries likeThree.js[6]orSpiderGL[7],asopposedtocommercialandmoreplatformorientedprojectslike Sketchfab[8]andUnity[9],arewellsuitedforintegratingcustomframeworkdesignsandopensource licensedalgorithms. AlthoughmostWebGLlibrariesofferavarietyofmethodstoloadalargeamountof3Dgeometry file formats, many of the existing formats are not well suited for web-based loading of large 3D models. Thismotivatestheuseofweb-optimized3Dformatsthatofferfeatureslikedatastreaming, geometry compression and progressive model loading. Some noteworthy formats in this regard include X3D [10] and XML3D [11] as human readable text based formats and the X3DOM Binary Format[12]thatexternalizesthemeshdatainformofdirectlyGPUcompatiblebinaryblobswhile stillcontainingtextbaseddescriptions. TheOpenCTMformat[13]addressesthelargedatasizeswith entropyreductionandLZMAentropyencoding,which,asasideeffect,addsadecodingoverheadon theclientside. TheWebGL-Loaderformat[14]combinespost-transformvertexcacheoptimization[15] forfasterrenderingwithsophisticateddelta-encodingandquantizationtooutputaUTF-8encoded data stream that additionally benefits from the GZIP compression of a web-server. This results in acomparativelyhighcompressioncombinedwithverylowdecompressiontimeswhencompared to X3D and OpenCTM [16]. X3DDOM was further extended by the POP Buffer format [17] that employsahierarchicalquantization-basedcompressionscheme,whichenablesprogressivemodel loading. TheNexusformat[18,19],whichwillbedetailedinSection3.2,introducesahierarchicalmesh reductionwithfastdecodingandviewdependentrendering,enablingaprogressivevisualizationof verylargemodels. Inthecontextof3Dscans,anadditionalusefulfeatureofthenexusformatisits capabilitytohandlenon-2-manifoldmeshes. Overthelastyears,various3Dframeworksfortheonlinepresentationofculturalheritageartifacts havebeenintroduced,someofwhicharelinkedtothepublicationofscanningprojectsinmuseum collections.SomeexamplesinthisregardwithanexclusivefocusonmusealpresentationaretheBritish Museum,whichresortstopublishingsmallpartsoftheircollectionviaSketchfab[20],theSmithonian InstitutionwiththeMemento-based[21](nowAutodeskRemake)SmithonianX3Dframework[22] or the large collection of 3D scanned Vietnamese statues and architectural artifacts of VR3D [23]. Asidefromtheselargescaleprojects,therearealsofreeculturalheritagepresentationframeworkslike 3DHOP[24],whichcancombine3Dandmultimediacontentformuseumandteachingpurposesand whichusetheNexusdataformat[18,19]. Commonfeaturesofmanyapplicationsofthesecultural heritageviewersaretheuseoflowtomediumresolutionmodelscombinedwithmediumtohigh resolutiontexturesandatimeconsuming,elaboratemodelpreparationregardingthecorrectionof scanningissues. Relatedworkdirectlyassociatedwithanalysisandpresentationof3Dcuneiformcontentincludes theintegralinvariantbasedextractionofcuneiformsignsas2DvectordrawingsofMaraetal. [25,26] integrated into the GigaMesh framework and the cuneiform wedge extraction presented by the authors[27]integratedintotheCuneiformAnalyserframework. However,bothsolutionsaretargeted atofflineusageduetolargedatasetsandcomputationallyexpensivegeometryprocessing. In2017, theHilprechtSammlungJena[28]startedpublishingtheirlargecollectionofcuneiformtabletsonline, takingadvantageofowningtheoriginalartifactsforallpublisheddatasetsincludingthecopyright. Accessisprovidedbyofferingdownloadabledatasetsandbyloadingtheuncompresseddatasetsinto MeshLabJS[29],aweb-baseddescendantofMeshLab[30],apopular,freemesheditingandconversion solution. Alsoin2017,Collinsetal. launchedtheVirtualCuneiformTabletReconstructionProject[31], whichincludesabasiconlineviewerformanuallyandautomaticallyjoiningcuneiformfragments. Whileprovidingaworkingtoolforjoininglowresolutionfragmentswithfracturefaces,thismethod wouldnotworkonincompletehighresolutiondatasetswithmissingfracturefaces. Connectedwith Informatics 2017,4,44 6of16 thiswork,Woolleyetal.evaluatedmethodsforthedevelopmentofacollaborativevirtualenvironment for3Dreconstructionofcuneiformtablets[32]. Thisinterestingstudyisfocusedontheanalysisof interactionmodalitiesandusergroupsregardingtheeffectivenessofthecollaboration,whichisan importantaspectofsystemdesign. 3.2. 3DCuneiformDataCharacteristicsandPreparation Most3Dscannedcuneiformdatasetscanbeclassifiedintotwomaincategoriesoftentiedtothe originofthedata. Thefirstcategoryismostlycreatedbymuseumsdigitizingtheirowninventory, whichpredominantlyproducecomplete,highqualitydatasetsincludingtextureinformation. Thisis possibleduetounlimitedartifactaccessandemployingsignificantamountsoftimeforscanningand post processing the data. A second type of datasets is mainly produced by scientists with limited accesstoartifactsownedbyforeigninstitutions. Thiscansignificantlychangetheprioritiesduring data acquisition. For metrological analysis of cuneiform script, as targeted in the BMBF project ‘3D-JoinsundSchriftmetrologie’,capturingthescriptcoveredpartsoftheartifactswithasufficient resolution and partial coverage of fracture faces was combined with the target to scan as many fragmentsaspossibleduringtheavailabletimeslotswithaccesstothefragments. Inthisprocess, thegeometricalcompletenessofnon-scriptcoveredareasandtheacquisitionoftexturedatawasonly asecondaryobjective. Therefore,theresultingscansoftencontainunscannedsurfaceareas,holesand non-2-manifoldgeometry. Asuitablegeometrydataformatmustbeabletodealwiththesedeficiencies andbeabletohandleandstreamlargegeometriesaswellassatisfythephilologicalrequirements for collation tasks as described in Section 2. In addition to this, the data format should allow the deploymentofmethodstoobstructfullqualitymodelextractiontoacertainextentwhenneededfor legalreasons. Aninteractiveweb-basedscenariorequiresanoptimizationofthelatencyforviewinga3Dmodel while the scientific usability requires a minimum model quality to enable precise measurements. In view of the typical data sizes of cuneiform models, ranging from several megabytes to several gigabytes,andthecurrentspeedofinternetconnections,thisimpliestheuseofstreamingandstateof theartcompressiontechniques. Anotherimportantaspectisclientsidedecodingtime,whichmustbe lowenoughtonotoutweighthereductionoftransfertimegainedbydatacompression. OfthemethodsmentionedinSection3.1,theNexusformat[18,19]wastheonlyonetofeature highcompressionrates,progressiveandlocalmodelloadingandthepossibilitytoadaptthelevelof detailtolesscapablehardware. Inadditiontothis,thenexusformatiswellextendabletocustomdata characteristicsandfeaturesawelldocumentedopensourcetoolsetforcreationandmodification. TheNexusformat[18,19]isaprogressiveformatthatusesapatch-basedmultiresolutionstructure where the patch geometry is reduced and compressed independently. Patches of neighboring resolutionlevelsmustnotsharecommonmeshborderstoachieveauniformreductionbythequadric simplificationalgorithmovermultipleresolutionlevels. Asuitablevolumepartitioniscreatedby usingakd-treewithanalternatingsplitratio. Thegeometryencodingforindividualpatchesusesa rule-basedconnectivitycompressionandaquantization-basedgeometryandattributecompression withentropyencoding. Withoutlossycompression,generatedNexusfilesfortypicalcuneiformscans arearound1.7timesthesizeoftheoriginalmodel,whichresultsfromthegeneratedmulti-resolution data. Lossycompressionrates,however,dependonthequantizationsettings. Ausablecompression ratearound4.1canbeachievedforcuneiformdata,aswillbeshowninSection5. Perceivedloadings times are very fast, as a low resolution approximation from the highest level of the compression hierarchyisshownalmostimmediately. Themodelisthenprogressivelyrefinedbasedonapredefined drawbudget,amaximumcachesizeandaviewdependenttargeterror. On3Dscannedcuneiformdata,theincrementalpatch-basedgeometryreductionofthenexus formatisanimportantaspectforproducinghighqualitylowresolutionmeshes. Thisresultsfromthe factthatmanymeshsimplificationmethods,liketheusedquadricedgedecimation,tendtocreate meshesofpoorqualitywhenthetargetedgelengthismuchsmallerthantheaverageedgelengthofthe Informatics 2017,4,44 7of16 originalmeshandtheoriginalmeshisnon-2-manifold. Non-2-manifoldnessis,however,afrequent propertyofmany3Dscannedcuneiformdatasets. Asanimportantfactorforlesscapablehardware, the above mentioned possibility to define a draw budget allows to limit the amount of graphics memoryusedduringmodelrendering. Thecachesizeandadefinitionofaviewdependenttarget error,ontheotherhand,allowtolimitthemainmemoryconsumptionandthevisuallevelofdetail. Thisenablestheviewingofdatasetsonhardwarethat,otherwise,wouldnotbecapableofvisualizing datasetsofthissize. Beforethescandatacanbeconvertedintothenexusformat,thevertexdatahastobeextended with the ambient occlusion and curvature information required for visualization as described in the following section. The mesh data produced by the used scanner software [33] only includes monochromaticcolorinformation. Therefore,theadditionaldatacanbecolorcodedandstoredin the,uptothispoint,unusedcolorchannels. Asapositivesideeffect,thisavoidstheintroductionof additionaldatachannelsintothenexusformat. Also,thedata-enrichedintermediateply-filesremain readablebymoststandardmeshprocessingsoftwarelikeMeshLab[34]. 3.3. VisualizationMethods A scientific visualization environment for 3D cuneiform data has to address several basic requirements,themostimportantofwhichisahighqualityvisualizationoflarge,highresolution, untexturedmeshes. Thisresultsfromthefactthatmany3Dscannedcuneiformdatasetsrepresent damagedcuneiformfragmentswithsubtledetails. Dependingonthescanningmethods,manyofthe resulting3Dmodelsareuntextured,lackcolorinformationorincludecolorinformationthatexertsa negativeinfluenceonthevisualperceptibilityofgeometricaldetails. Therefore,methodsshouldbe usedthatoptimizethevisualspatialrepresentationofsubtledetailswhileatthesametimeproviding arealistic,highqualityvisualizationofthe3Dmodels. Therenderingiscomplementedbytoolsfor takingmeasurements,usercontrollablelighting,astylizedautographymodeandanintuitiveuser interfaceincludingviewportnavigationandparametercontrols. As the set of visualization methods used in previous work of the authors [27] has proven its usefulnessforofflineanalysisofcuneiformdatasets,theframeworkusesacombinationofambient occlusion, radiance scaling and lit sphere shading to render the datasets. Vertex-based ambient occlusion[35]approximatestheselfshadowingpropertiesofthesurfacethatcansignificantlyimprove thedepthperceptionofsurfacestructureswhenusedtocontroltheluminosityofthesurfaceshading. Although a real time approximation for ambient occlusion can be computed in screen space [36], this framework uses a precomputed, view-independent, gpu-accelerated ambient occlusion term, asdescribedin[37],forimprovedaccuracy. Realistic shading is achieved by using precomputed lighting in the form of lit-spheres. In a preparationstep,anorthographicimageofashadedsphere,includingacomplexsurfacematerialan arbitrarynumberoflightsandareflectiveenvironment,isrenderedintoasquaretexture. Theshading isthencomputedbyprojectingthenormalizedsurfacenormalorthereflectedviewdirectiononto thelit-spheretexture. Theprocessofpre-renderingatexturecanbereplacedbytakingphotographs ofsphericalobjectsinrealworldmaterialandlightingconditionsandcroppingtheresultingimage totheextendsofthesphere. Itisworthmentioningthattheresultinglit-spheretexturesmustnot containlocalsurfacefeaturesasopposedtocomponentsoftheshadingfunctionlikeglobalmaterial color,lightingandreflections. Thereforelocalsurfacefeaturesmustberemovedbyappropriateimage processingmethodlikesmoothingorcloning. To address cuneiform script analysis specifically, several types of lit-sphere textures were generated to resemble clay and metal type materials. This was realized by taking photos of clay spheres,includingnecessarypost-processing,aswellasbyrenderingsphereswithcomplexshaders usingahighqualityofflinerenderer.Theassociatedlightingsetupswerechosentoresemblefrequently usedlightingsituationsthatcanbefoundintraditionalphotographiccuneiformreproductionsto enhancewedgevisualization. Anespeciallycommonlightingsetupincludesadirectionallightsource Informatics 2017,4,44 8of16 positionedwitha45degreeangleatthetopleftofafragmentasthislightpositioncastsadvantageous shadowsonmanycuneiformwedgetypes. Aselectionofthreetypesoflit-spheresusedintheframeworkandtheresultingvisualappearance includingthelit-spheretexturesisshowninFigure3a–c. Thedepictedlit-spheretextureshavebeen additionallyprocessedtocounteractrenderingartifactsbyextrapolatingthecoloratthesphereborder tothesquaretextureborder. (a) (b) (c) Figure3.Asetofdifferentmaterials,withthecorrespondingsquarelit-spheretextureshowninthe bottomright,includingdiffuseclay(a),glossyclay(b)andpolishedgold(c). To visually enhance geometrical details on the scanned surfaces, the radiance scaling technique[38]isemployedthatcorrelatessurfacevariationstoaspectsoftheshadingfunction. Asthe namesuggests,radiancescalingadjuststhereflectedlightintensitydependingonthesurfacecurvature andmaterialproperties. Thisisrealizedbyapplyinganindependentmonotonicscalingfunctionto theoriginalBidirectionalReflectanceDistributionFunction. Asdetailedin[38],itsdesigndependson aninvariancepointα,inordernottoaffectplanarregions,andascalingmagnitudeγ. Thescaling functionisparameterizedusinganormalizedreflectanceandanormalizedcurvature. InanOpenGL- andGLSL-basedenvironmentthereflectancecanbeobtainedbycomputingthelengthofthecolor vectorresultingfromanarbitraryshadingfunctionlikephongshading,lit-sphereshadingorashading functioncomponentsuchasspecularityorambientocclusion. Thenormalizedcurvatureisobtained asahyperbolictangentmappedmeancurvature,asindescribedin[39]. Inthiswork,thescalingfunctionisparameterizedwithascalinginvariantpoint α = 0.1and ausercontrollablescalingmagnitudeγ ∈ [0,2]. Thescalingisappliedonlytothecolortermofthe shading function. Additional components, like the ambient occlusion, are applied independently astheyhavebeenfoundtoexertanegativeinfluenceontherenderingofgeometricdetailswithin cuneiformwedges. Asboththenormal-basedgradientandcurvaturecalculationsrequireaccessinga localneighborhoodofapixeltobeshaded,adeferredshadingarchitectureisused. Figure4a–dshowstheamountofvisualimprovementsasopposedtosimplephong-shading onanexemplarycuneiformfragment. Theeffectsofdetailenhancementusingradiancescalingon cuneiformwedgesisshowninFigure5. Themethodhasproventobeparticularlyusefulonabraded andcorrodedsurfaceareaswithsubtledetails. Informatics 2017,4,44 9of16 (a) (b) (c) (d) Figure4. Renderingimprovementoverphong-shading(a)withlit-sphereshading(b), additional ambient occlusion (c) and additional ambient occlusion and radiance scaling (d) on cuneiform fragmentE971. (a) (b) (c) Figure5.SectionofcuneiformfragmentE971without(a)andwithradiancescaling(b)andastylized rendering(c)ofthesamesectioninautographymode. 3.4. UserInterfaceDesignforCuneiformAnalysis Asidefromtheaspectsdirectlytiedtotransferandrenderingofthe3Dmodels,theuserinterface of the viewer is designed with two main objectives in mind. The interface should provide an intuitiveaccesstothemodels,whileatthesametimeaddressingmostoftherequirementsofcollation relatedtasks. Philologistsoftenanalyzegeometricdetailsonrealartifactsbyvaryingthepositionofadirected lightsource. Therefore,theframeworkfeaturesalightdirectionmodethatcanbeusedtodirectly controlthedirectionoflightingwiththemousepointeronavirtualsphere. Whilephong-shading offersunrestrictedcontrolofthelightposition,thelightingpositionoflit-sphereshadingcanonlybe influencedbyrotatingthelitspheretexturesintheimageplane. Alsoinspiredbytraditionalcuneiform analysismethods,theframeworkintegratesanautographymode,whichrendersastylizedblackand white image of the geometry, as shown in Figure 5c, based on precomputed maximum curvature values. Thisrenderingstyleresembleshanddrawnautographiesofcuneiformfragments,liketheone depictedinFigure1a,whichcanbehelpfulduringthetranscriptionprocess. Astheorientationofscannedcuneiformfragmentsandthecontainedtextsin3Dspaceisnot known a priori, the viewport navigation is realized using the quaternion-based arcball method. This allows turning the models in any desired direction without experiencing gimbal lock related sideeffectsofeulerrotationand,asopposedtothetrackballmethod,anintuitivewayofrotatingthe viewportintheimageplane.Thelatterisespeciallyimportanttoaligncuneiformtextlineshorizontally intheviewport. Theinitialzoomiscoupledwiththesizeofthegeometrytoalwaysdisplaythefull Informatics 2017,4,44 10of16 3Dmodelwhenopeninganewdataset. Toavoiddepthbufferissueswiththerequiredwidezoom range, the framework uses an optimized logarithmic depth buffer implementation [40] like in the OuterraEngine. Toassistwithcomplexmeasurementtasks,theframeworkintegratesameasurementmodeand anorthographiccameramodewithadynamicscaleobject. Themeasurementmodeallowstoposition multiplemeasurementtapesonthesurfaceoftheobject,asshowninFigure6. Themeasureddistances aredisplayedastextoverlaysonthescreenandinformofamillimetersizedstripepatternonthe measurement tape object. It has to be noted that the measurement mode works only on scanned objects with a known system of measurement. Although most scans are measured in millimeter scale,scanscreatedusingphotometricreconstructiontechniques,likelightdomes[41],mayexhibit significantdistortionsthatpreventprecisemeasurements. Muchlikeinmanytraditionalphotographic reproductions of cuneiform fragments, the scale object, as can be seen in Figure 6, consists of an alternatingdualrowpatternofblackandwhitesquares. Thescaleofthesquaresandanassociated measurementunitisadjusteddynamicallyastheuserzoomstheviewport. Thisway,measurements canbetakeneveninprintedscreenshots. Tofurthersupportcollaborativeworkonthe3Dmodels, the viewer supports the export of links to reopen models with the current camera configuration, which is also useful for inventory related tasks. For instance, occurrences of sign forms could be directlyreferencedfroma3Dsigninventorydatabase. Figure6. Thegraphicaluserinterfaceoftheframework,includingquickaccessbuttonsonthetop left,thedat.GUI[42]basedconfigurationoftherenderingpipelineonthetopright,thedynamicscale objectatthebottomleftandseveralmeasurementtapesonthemodel. 4. IntegrationintotheHethitologie-PortalMainz Theweb-based3DapproachisintegratedintotheHethitologie-PortalMainz,theleadingonline researchresourceinthefieldofHittitology. Onecentralfeatureoftheportalistheconcordanceof Hittitecuneiformtablets. Thisonline-accessibledatabaseincludesalargesearchablecatalogofknown cuneiformtabletslinkedwithaphotographiccollection,join-sketches,transcriptions,transliterations, publication and provenience data. To ensure an intuitive data integration, the 3D models can be accessed directly from the concordance query results much like the traditional photographic reproductions. The possibility of accessing a 3D model depends not only on the existence of a respective 3D scan but also on the publication state of the corresponding cuneiform manuscript, whichonlypermitsaccesstoalreadypublishedmanuscripts. Figure7showsrepresentativequery resultintheconcordance,listingcuneiformdocumentswhichmatchthesearchcriteria. Beginningon thelefthandside,thecolumn“Inventarnummer”containstheinventorynumber,aniconindicatingthe existenceofajoinlayoutsketch,arediconindicatingtheexistenceofphotographicreproductionsand thetext“3D”ifaninteractive3Dscanisavailable. Layoutsketches,2Dreproductionsand3Dscansare directlylinkedfromtheseelements. Theremainingcolumns,ifavailable,includeapublicationnumber (withlinkedautographyimages),anindextotheCataloguedesTextesHittites(agenreclassificationof Hittitedocuments),aplaceofdiscovery,adatingandasetofannotationsregardingmanuscriptcontent

Description:
the Sumerians, the Babylonians, the Akkadians, the Elamites, the Assyrians . Format [12] that externalizes the mesh data in form of directly GPU
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.