ebook img

Wavelet methods for solving partial differential equations and fractional differential equations PDF

313 Pages·2017·5.877 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wavelet methods for solving partial differential equations and fractional differential equations

Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations Dr. Santanu Saha Ray Department of Mathematics National Institute of Technology Rourkela Rourkela, Odisha, India Dr. Arun Kumar Gupta School of Applied Sciences KIIT University Bhubaneswar, Odisha, India CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-138-05381-6 (Hardback) International Standard Book Number-13: 978-1-315-16718-3 (eBook) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Saha Ray, Santanu, author. | Gupta, Arun Kumar (Mathematician), author. Title: Wavelet methods for solving partial differential equations and fractional differential equations / Santanu Saha Ray and Arun Kumar Gupta. Description: Boca Raton : CRC Press, 2018. | Includes bibliographical references and index. Identifiers: LCCN 2017039698| ISBN 9781138053816 (hardback : alk. paper) | ISBN 9781315167183 (ebook) Subjects: LCSH: Differential equations, Partial. | Wavelets (Mathematics) | Fractional differential equations. | Differential equations--Numerical solutions. Classification: LCC QA374 .S24 2018 | DDC 515/.353--dc23 LC record available at https://lccn.loc.gov/2017039698 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents List of Figures .................................................................................................................................xi List of Tables ..................................................................................................................................xv Preface .........................................................................................................................................xxiii Acknowledgements .................................................................................................................xxvii Mathematical Preliminary ........................................................................................................xxix 1. Numerous Analytical and Numerical Methods ................................................................1 1.1 Introduction ...................................................................................................................1 1.2 Part I: Fundamental Idea of Various Analytical Methods .......................................1 1.2.1 Variational Iteration Method (VIM) ..............................................................1 1.2.2 First Integral Method .......................................................................................2 1.2.2.1 Algorithm of FIM .............................................................................3 1.2.3 Homotopy Perturbation Method (HPM) .....................................................4 1.2.4 Optimal Homotopy Asymptotic Method (OHAM) ....................................5 1.2.5 Homotopy Analysis Method (HAM) ............................................................8 1.3 Part II: Fundamental Idea of Various Numerical Methods ...................................10 1.3.1 Haar Wavelets and the Operational Matrices ............................................11 1.3.1.1 Function Approximation ...............................................................13 1.3.1.2 Operational Matrix of the General Order Integration ..............14 1.3.2 Legendre Wavelets .........................................................................................15 1.3.2.1 Function Approximation ...............................................................16 1.3.2.2 Operational Matrix of the General Order Integration ..............17 1.3.3 Chebyshev Wavelets ......................................................................................18 1.3.3.1 Function Approximation ...............................................................19 1.3.3.2 Operational Matrix of the General Order Integration ..............19 1.3.4 Hermite Wavelets ...........................................................................................20 1.3.4.1 Function Approximation ...............................................................21 1.3.4.2 Operational Matrix of the General-Order Integration ..............21 2. Numerical Solution of Partial Differential Equations by Haar Wavelet Method ....23 2.1 Introduction .................................................................................................................23 2.2 Outline of Present Study ............................................................................................24 2.2.1 Burgers’ Equation ..........................................................................................24 2.2.2 Modified Burgers’ Equation .........................................................................24 2.2.3 Burgers–Huxley and Huxley Equations .....................................................25 2.2.4 Modified Korteweg-de Vries (mKdV) Equation ........................................25 2.3 Application of the Haar Wavelet Method to Obtain the Numerical Solution of Burgers’ Equation ...................................................................................................25 2.3.1 Numerical Results and Discussion for Burgers’ Equation .......................30 2.4 Haar Wavelet-Based Scheme for Modified Burgers’ Equation .............................31 2.4.1 Numerical Results for Modified Burgers’ Equation .................................35 2.5 Analytical and Numerical Methods for Solving the Burgers–Huxley Equation .......37 2.5.1 Application of Variational Iteration Method for Solving the Burgers–Huxley Equation ............................................................................38 v vi Contents 2.5.2 Application of Haar Wavelet Method for Solving the Burgers–Huxley Equation ..........................................................................................................39 2.5.3 Numerical Results for the Burgers–Huxley Equation ..............................41 2.6 Application of Analytical and Numerical Methods for Solving the Huxley Equation .......................................................................................................................44 2.6.1 Application of Variational Iteration Method for Solving the Huxley Equation ..........................................................................................................44 2.6.2 Application of the Haar Wavelet Method for Solving the Huxley Equation ..........................................................................................................45 2.6.3 Numerical Results for the Huxley Equation ..............................................47 2.7 Numerical Solution of the Generalized mKdV Equation .....................................49 2.7.1 Numerical Results of the mKdV Equation .................................................53 2.8 Error of Collocation Method .....................................................................................59 2.9 Error Analysis ..............................................................................................................61 2.10 Conclusion ...................................................................................................................62 3. Numerical Solution of a System of Partial Differential Equations ............................63 3.1 Introduction .................................................................................................................63 3.2 Overview of the Problem ...........................................................................................64 3.3 Analytical Solution of a System of Nonlinear Partial Differential Equations ....65 3.3.1 Application of HPM to Boussinesq–Burgers’ Equations .........................65 3.3.2 Application of OHAM to Boussinesq–Burgers’ Equations......................67 3.4 Convergence of HPM .................................................................................................70 3.5 Convergence of OHAM .............................................................................................72 3.6 Numerical Results and Discussions .........................................................................73 3.7 Numerical Approach to Boussinesq–Burgers’ Equations .....................................73 3.8 Convergence of Haar Wavelet Approximation.......................................................81 3.9 Numerical Results .......................................................................................................83 3.10 Conclusion ...................................................................................................................88 4. Numerical Solution of Fractional Differential Equations by the Haar Wavelet Method ....................................................................................................................89 4.1 Introduction to Fractional Calculus ..........................................................................89 4.2 Fractional Derivative and Integration ......................................................................90 4.2.1 Riemann–Liouville Integral and Derivative Operator .............................90 4.2.2 Caputo Fractional Derivative .......................................................................92 4.2.3 Grünwald–Letnikov Fractional Derivative ................................................92 4.2.4 Riesz Fractional Derivative...........................................................................93 4.3 Outline of the Present Study .....................................................................................94 4.4 Application of Analytical and Numerical Techniques to the Fractional Burgers–Fisher Equation..........................................................................................95 4.4.1 Haar Wavelet-Based Scheme for the Fractional Burgers–Fisher Equation ...95 4.4.2 Application of Optimal Homotopy Asymptotic Method to the Time-Fractional Burgers–Fisher Equation ..................................................98 4.5 Numerical Results for a Fractional Burgers–Fisher Equation ............................100 4.6 Application of Analytical and Numerical Methods to a Fractional Fisher’s Type Equation ............................................................................................................101 4.6.1 Haar Wavelet-Based Scheme for the Generalized Fisher’s Equation ...101 4.6.2 Application of OHAM to the Generalized Fisher’s Equation ...............105 Contents vii 4.7 Numerical Results for a Fractional Fisher’s Equation .........................................106 4.8 Solution of a Fractional FPE ....................................................................................107 4.8.1 Application of Haar Wavelets to Time-Fractional FPE ...........................107 4.8.2 Application of a Two-Dimensional Haar Wavelet for Solving Time- and Space-Fractional FPE ................................................................112 4.9 Numerical Results for a Fractional FPE .................................................................113 4.10 Convergence Analysis of the Two-Dimensional Haar Wavelet Method ..........114 4.11 Conclusion .................................................................................................................118 5. Application of Legendre Wavelet Methods for the Numerical Solution of Fractional Differential Equations ...............................................................................121 5.1 Introduction ...............................................................................................................121 5.2 Outline of the Present Study ...................................................................................121 5.3 Solution of a Time-Fractional Parabolic Partial Differential Equation ..............123 5.3.1 Application of HPM to Find the Exact Solution of Fractional Order Parabolic PDE ...................................................................................123 5.3.2 Application of a Two-Dimensional Haar Wavelet for the Numerical Solution of a Fractional PDE ......................................................................125 5.3.3 Application of Two-Dimensional Legendre Wavelet for Solving Fractional PDE ..............................................................................................128 5.4 Numerical Results of Fractional Order PDE .........................................................128 5.5 Implementation of Legendre Wavelets for Solving a Fractional KBK Equation .....134 5.6 Numerical Results and Discussion of a Time-Fractional KBK Equation ..........137 5.7 Application of Analytical and Numerical Methods for Solving the Time-Fractional sKdV Equation ..............................................................................138 5.7.1 Implementation of the Legendre Wavelet Method for a Numerical Solution of the Fractional sKdV Equation ................................................138 5.7.2 Comparison with HAM for a Solution of the Time-Fractional sKdV Equation .........................................................................................140 5.8 Numerical Results and Discussion of the Time-Fractional sKdV Equation .....142 5.9 Convergence of Legendre Wavelet .........................................................................147 5.10 Solution of Fractional KK Equation Using Legendre Multiwavelets ................151 5.10.1 Introduction of Legendre Multiwavelets .................................................151 5.10.2 Function Approximation ............................................................................151 5.10.3 Operational Matrix of the General Order Integration ............................152 5.11 Application of Analytical and Numerical Methods for Solving the Time-Fractional KK Equation ..................................................................................153 5.11.1 Solution of the Fractional KK Equation Using Legendre Multiwavelets ........................................................................................153 5.11.2 Comparison with OHAM for a Solution of the Time-Fractional KK Equation ...........................................................................................155 5.12 Numerical Results of the Fractional KK Equation ...............................................156 5.13 Conclusion .................................................................................................................161 6. Application of Chebyshev Wavelet Methods for Numerical Simulation of Fractional Differential Equations ...............................................................................167 6.1 Introduction ...............................................................................................................167 6.2 Outline of the Present Study ...................................................................................168 6.3 Formulation of a Time-Fractional SK Equation ....................................................169 viii Contents 6.4 Application of Analytical and Numerical Methods for Solving a Fractional SK Equation ..........................................................................................171 6.4.1 Implementation of Chebyshev Wavelet on a Time-Fractional SK Equation ................................................................................................171 6.4.2 Comparison with HAM for the Solution of a Time-Fractional SK Equation .............................................................................................................173 6.5 Numerical Results of a Fractional SK Equation ...................................................175 6.6 Application of the Two-Dimensional Chebyshev Wavelet Method on a Time-Fractional CH Equation .........................................................................175 6.7 Numerical Results and Discussion .........................................................................179 6.8 Implementation of the Two-Dimensional Chebyshev Wavelet Method for an Approximate Solution of a Riesz Space-Fractional SGE ..........................182 6.9 Numerical Results and Discussion .........................................................................184 6.10 Convergence Analysis of a Chebyshev Wavelet ...................................................191 6.11 Conclusion .................................................................................................................193 7. Application of the Hermite Wavelet Method for Numerical Simulation of Fractional Differential Equations ...............................................................................195 7.1 Introduction ...............................................................................................................195 7.2 Algorithm of Hermite Wavelet Method .................................................................196 7.3 Application of Analytical and Numerical Methods for Solving a Time-Fractional Modified Fornberg–Whitham Equation ................................198 7.3.1 Two-Dimensional Hermite Wavelet Method for Solving a Nonlinear Time-Fractional Modified Fornberg–Whitham Equation ......................198 7.3.2 Comparison with OHAM for the Solution of Time-Fractional Modified Fornberg–Whitham Equation ...................................................200 7.4 Numerical Results and Discussion .........................................................................201 7.5 Application of Analytical Methods to Determine the Exact Solutions of a Time-Fractional Modified Fornberg–Whitham Equation ............................204 7.5.1 Implementation of the FIM for Solving a Fractional Modified Fornberg–Whitham Equation ....................................................................204 7.5.2 Implementation of OHAM for Approximate Solution of Fractional Modified Fornberg–Whitham Equation ...................................................213 7.6 Numerical Results and Discussion .........................................................................214 7.7 Application of Analytical and Numerical Methods for Solving a Time-Fractional Coupled Jaulent–Miodek Equation ........................................220 7.7.1 Two-Dimensional Hermite Wavelet Method for Solving Nonlinear Time-Fractional Coupled Jaulent–Miodek Equations ............................220 7.7.2 Comparison with OHAM for the Solution of a Nonlinear Time-Fractional Coupled Jaulent–Miodek Equation ..............................224 7.8 Numerical Results and Discussion .........................................................................226 7.9 Convergence of a Hermite Wavelet ........................................................................234 7.10 Conclusion .................................................................................................................236 8. Implementation of the Petrov–Galerkin Method for Solving Fractional Partial Differential Equations ..........................................................................................239 8.1 Introduction ...............................................................................................................239 8.2 Implementation of the Petrov–Galerkin Method for the Numerical Solution of the Time-Fractional KdVB Equation ..................................................241 Contents ix 8.3 Numerical Results and Discussion .........................................................................245 8.4 Implementation of the Petrov–Galerkin Method for the Numerical Solution of the Time-Fractional STO Equation .....................................................................246 8.5 Numerical Results and Discussion .........................................................................252 8.6 Conclusion .................................................................................................................255 References ....................................................................................................................................257 Index .............................................................................................................................................267

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.