ebook img

Wave Propagation in Structures (Mechanical Engineering Series) PDF

432 Pages·2020·18.056 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wave Propagation in Structures (Mechanical Engineering Series)

Mechanical Engineering Series James F. Doyle Wave Propagation in Structures Third Edition Mechanical Engineering Series SeriesEditor FrancisA.Kulacki DepartmentofMechanicalEngineering UniversityofMinnesota Minneapolis,MN,USA The Mechanical Engineering Series presents advanced level treatment of topics on the cutting edge of mechanical engineering. Designed for use by students, researchers and practicing engineers, the series presents modern developments in mechanical engineering and its innovative applications in applied mechanics, bioengineering,dynamicsystemsandcontrol,energy,energyconversionandenergy systems,fluidmechanicsandfluidmachinery,heatandmasstransfer,manufacturing science and technology, mechanical design, mechanics of materials, micro- and nano-science technology, thermal physics, tribology, and vibration and acoustics. The series features graduate-level texts, professional books, and research mono- graphsinkeyengineeringscienceconcentrations. Moreinformationaboutthisseriesathttp://www.springer.com/series/1161 James F. Doyle Wave Propagation in Structures Third Edition JamesF.Doyle SchoolofAeronautics&Astronautics PurdueUniversity WestLafayette,IN,USA ISSN0941-5122 ISSN2192-063X (electronic) MechanicalEngineeringSeries ISBN978-3-030-59678-1 ISBN978-3-030-59679-8 (eBook) https://doi.org/10.1007/978-3-030-59679-8 ©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerland AG2021 2ndedition:©Springer1997 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Thisbookisdedicatedto myfatherandmother, PatrickandTeresaDoyle. Thanksforthedreams. HadItheheavens’embroideredcloths, Enwroughtwithgoldenandsilverlight, Theblueandthedimandthedarkcloths Ofnightandlightandthehalflight, Wouldspreadtheclothsunderyourfeet: ButI,beingpoor,haveonlymydreams; Ihavespreadmydreamsunderyourfeet; Treadsoftlybecauseyoutreaduponmydreams. —W.B.Yeats[1] Preface Thestudyofwavepropagationseemsveryremotetomanyengineers,eventothose who are involved in structural dynamics. One of the reasons for this is that the examples usually taught in school are either so simple as to be not applicable to real world problems or so mathematically abstruse as to be intractable. This book contains an approach, spectral analysis or frequency domain synthesis, that I have found to be very effective in analyzing waves. What has struck me most about this approach is how I can use the same analytical framework to examine the experimental results as well as to manipulate the experimental data itself. As an experimentalist, I had found it very frustrating having my analytical tools incompatiblewithmyexperiments.Forexample,itisexperimentallyimpossibleto generate a step function wave and yet that is the type of analytical solution often available. Spectral analysis is very encompassing—it touches on analysis, numerical methods,andexperimentalmethods.Iwantthisbooktodojusticetoitsversatility, somanysubjectsareintroduced.Asaresult,someareasmayseemalittlethin,butI dohope,nonetheless,thatthebiggerpicture,theunity,comesacross.Furthermore, spectralanalysisisnotsomuchasolutiontechniqueasitisadifferentinsightinto the wave mechanics; consequently, in most of the examples an attempt is made to maketheconnectionbetweenthefrequencydomainandtimedomains. In writing the second edition, I strived to keep what was good about the first edition—that is, the combination of experimental and analytical results—but incorporated more recent developments and extensions at that time. The question not fully articulated in the first edition is: What should be different about a book on waves in structures? This is the question that guided my reorganization of the material as well as the selection of new topics. It had become clearer to me that theessenceofastructureisthecouplingofsystemsand,thisshouldbethecentral theme of a book on waves in structures. There are two readily recognized forms of coupling: mechanical coupling “at the ends” such as when two bars are joined at an angle, and differential coupling as when two bars are connected uniformly alongtheirlengthsbysprings.Bothcouplingsareintimatelyrelatedtoeachotheras seenfromtheexampleofacurvedbeam:itcanbemodeledasacollectionofsmall vii viii Preface straightsegmentsconnectedendtoend,ordirectlyintermsofcoupleddifferential equations. The two approaches, ultimately, give the same results but, at the same time, give quite different insights into the system behavior. The former leads to richer system response functions and its ultimate form is in the spectral element method. The latter leads to richer differential equations, which is manifested in very interesting spectrum relations. The variety of examples were chosen so as to illustrateandelaborateonthisdualaspectofcoupling. Inwritingthisthirdedition,againIstrivedtokeepintactwhatisgoodaboutthe secondeditionbutaddrecentdevelopments.Thetwomostimportantdevelopments overthelasttwodecadesistheintroductionofengineeredmaterialsintheformof metamaterialsandnanostructures.Theyaddanewleveltothemeaningofstructure. The other development is the almost universal adoption of finite element (FE) methodsasthe“goto”toolforsolvingstructuraldynamicsproblems.Iseespectral analysisasatooltogiveinsightintodatabeitobtainedfromphysicalexperiment or computer experiment. In this edition, some tools are developed to extend the postprocessingofFEdatausingspectralanalysisideas. Theorganizationofthechaptersismostlysimilartothatofthesecondedition, buteachchapterisrevisedandupdatedwithsomenewexamplesandreferencesto the literature. One completely new chapter has been added. Chapter 9 deals with discreteanddiscretizedstructures.Spectralanalysismethodsareaverynaturalway toanalyzethebehaviorofthesesystems.Examplesaretakenfromnanotechnology andmoleculardynamics. In recent years, desktop computers have become incredibly powerful and very affordable. Thus, problems that would not be tackled in the past can be accom- plishedveryquickly,andsolutionschemesrejectedinthepastarenowfeasible.For example,inthefirstedition,thedoublesummationwasbarelyintroduced,butnow it plays a central role in the dynamics of plate and shell structures. Similarly, the eigenvibrationanalysisoflargestructureswaslimitedtothelowestmodesbutnow canbeappliedtotheveryhigh-frequencymodesofrelevancetowavepropagation in discrete structures. Therefore, not only is the use of a computer implicit in all theexamples,thesolutionstrategiesandtechniquesarealsocomputeroriented.In asimilarvein,Ihavetriedtosupplementeachchapterwithacollectionofpertinent problemsplusspecificreferencesthatcanformthebasisforfurtherstudy. A book like this is impossible to complete without the help of many people, but it is equally impossible to properly acknowledge all of them individually. However, I would like to single out helpers on the first and second editions: Brian Bilodeau, Albert Danial, Sudhir Kamle, Lance Kannal, Matt Ledington, Mike Martin, Steve Rizzi, Gopal Srinivasan, and Hong Zhang. Thank you guys. Theerrorsandinaccuraciesinalleditionshavebeenpurelymyowndoing. WestLafayette,IN,USA JamesF.Doyle August,2020 Contents Introduction ...................................................................... 1 References..................................................................... 6 1 SpectralAnalysisofWaveMotion ......................................... 7 1.1 FourierTransforms..................................................... 7 1.1.1 ContinuousFourierTransforms............................... 8 1.1.2 DiscreteFourierTransform ................................... 12 1.1.3 FastFourierTransformAlgorithm............................ 18 1.1.4 SpaceDistributionsUsingFourierSeries .................... 20 1.2 ApplicationsUsingtheFFTAlgorithm ............................... 22 1.2.1 ExplorationsoftheProperties ................................ 23 1.2.2 ExperimentalAspectsofWaveSignals....................... 26 1.3 SpectralAnalysisofWaveMotion .................................... 31 1.3.1 GeneralFunctionsofSpace-TimeandSpectrumRelations. 31 1.3.2 SomeWaveExamples......................................... 34 1.3.3 GroupSpeed................................................... 37 1.3.4 SummaryofWaveRelations.................................. 39 1.4 PropagatingandReconstructingWaves............................... 40 1.4.1 BasicAlgorithm ............................................... 40 1.4.2 IntegrationofSignals.......................................... 44 FurtherResearch .............................................................. 46 References..................................................................... 47 2 LongitudinalWavesinRods................................................ 49 2.1 ElementaryRodModeling............................................. 49 2.1.1 EquationofMotionandSpectralAnalysis................... 50 2.1.2 BasicSolutionforWavesinRods ............................ 53 2.2 DissipationinRods..................................................... 56 2.2.1 DistributedConstraint......................................... 56 2.2.2 ViscoelasticRod............................................... 59 2.3 CoupledThermoelasticWaves......................................... 61 2.3.1 GoverningEquations.......................................... 62 ix x Contents 2.3.2 TheSpectrumRelation........................................ 64 2.3.3 BlastLoadingofaRod........................................ 65 2.4 ReflectionandTransmissionofWaves................................ 68 2.4.1 ReflectionfromanElasticBoundary......................... 69 2.4.2 ReflectionfromanOscillator ................................. 71 2.4.3 ConcentratedMassConnectingTwoRods................... 72 2.4.4 InteractionsataDistributedElasticJoint .................... 74 2.5 DistributedLoading.................................................... 76 2.5.1 PeriodicallyExtendedLoadModel........................... 76 2.5.2 ConnectedWaveguideSolution............................... 79 FurtherResearch .............................................................. 80 References..................................................................... 82 3 FlexuralWavesinBeams.................................................... 85 3.1 Bernoulli–EulerBeamModeling...................................... 85 3.1.1 EquationsofMotionandSpectralAnalysis.................. 86 3.1.2 BasicSolutionforWavesinBeams .......................... 89 3.1.3 BeamwithAxialLoad ........................................ 93 3.2 Bernoulli–EulerBeamwithConstraints............................... 94 3.2.1 BeamonanElasticFoundation............................... 95 3.2.2 CoupledBeamStructure ...................................... 98 3.3 ReflectionandTransmissionofFlexuralWaves...................... 104 3.3.1 ReflectionsfromSimpleEnds ................................ 105 3.3.2 ReflectionsandTransmissionsataGeneralJoint............ 107 3.4 CurvedBeams.......................................................... 112 3.4.1 DeformationofCurvedBeams ............................... 112 3.4.2 SpectrumRelation............................................. 115 3.4.3 ImpactofaCurvedBeam..................................... 119 FurtherResearch .............................................................. 121 References..................................................................... 122 4 HigherOrderWaveguideModels.......................................... 123 4.1 WavesinInfiniteandSemi-InfiniteMedia............................ 123 4.1.1 Navier’sEquationsandHelmholtzPotentials................ 124 4.1.2 ConstructingPotentialsAppropriateforBoundaries ........ 127 4.1.3 ForcedResponseofaSemi-InfinitePlane.................... 132 4.1.4 Free-EdgeWaves:RayleighSurfaceWaves.................. 135 4.2 WavesinDoublyBoundedMedia..................................... 137 4.2.1 ForcedResponses.............................................. 137 4.2.2 SpectrumRelationsforFree-WaveResponses............... 141 4.2.3 DiscussionofLambWavesinStructuralWaveguides....... 145 4.3 VariationalFormulationofDynamicEquilibrium.................... 146 4.3.1 WorkandStrainEnergyinaGeneralBody.................. 146 4.3.2 VirtualWorkandHamilton’sPrinciple....................... 148 4.3.3 IllustrativeApplicationoftheRitzSemi-directMethod..... 152

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.