ebook img

Wave packet dynamics studied by ab initio methods PDF

157 Pages·2007·1.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Wave packet dynamics studied by ab initio methods

Wave packet dynamics studied by ab initio methods: Applications to strong-field ionization of atoms and molecules Thomas Kim Kjeldsen Department of Physics and Astronomy University of A˚rhus PhD Thesis August 2007 Contents Preface v Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . . v Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of publications . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Introduction 1 2 Dynamics of charged particles in electromagnetic fields 3 2.1 The electromagnetic fields . . . . . . . . . . . . . . . . . . . . 3 2.2 A classical particle in an electromagnetic field . . . . . . . . . 5 2.2.1 The Lagrangian formulation . . . . . . . . . . . . . . . 5 2.2.2 The Hamiltonian formulation . . . . . . . . . . . . . . 7 2.2.3 Gauge considerations . . . . . . . . . . . . . . . . . . . 8 2.3 Electromagnetic fields in quantum mechanics . . . . . . . . . 9 2.3.1 The time dependent Schr¨odinger equation . . . . . . . 9 2.3.2 Gauge transformations in quantum mechanics . . . . . 10 2.3.3 The electrostatic field . . . . . . . . . . . . . . . . . . 11 2.3.4 Dipole gauges . . . . . . . . . . . . . . . . . . . . . . . 11 3 Discretization of functions 17 3.1 Finite basis representation . . . . . . . . . . . . . . . . . . . . 17 3.2 Grid representation and finite differences . . . . . . . . . . . . 18 3.3 Grid-Fourier representation . . . . . . . . . . . . . . . . . . . 21 3.3.1 Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Grid-Legendre representation . . . . . . . . . . . . . . . . . . 23 3.5 Finite element method . . . . . . . . . . . . . . . . . . . . . . 28 3.6 Benchmark – The time independent Schr¨odinger equation . . 30 3.6.1 Hydrogen radial equation . . . . . . . . . . . . . . . . 32 4 The time dependent Schr¨odinger equation – numerical as- pects 37 4.1 Time evolution operator . . . . . . . . . . . . . . . . . . . . . 37 4.2 The operator exponential . . . . . . . . . . . . . . . . . . . . 40 4.3 Approximations to the time evolution operator . . . . . . . . 42 i ii CONTENTS 4.3.1 Crank-Nicolson method . . . . . . . . . . . . . . . . . 42 4.3.2 The split operator . . . . . . . . . . . . . . . . . . . . 46 4.3.3 A combined split operator Crank-Nicolson method . . 48 4.3.4 The time step size . . . . . . . . . . . . . . . . . . . . 49 4.3.5 Alternative approximation schemes . . . . . . . . . . . 50 4.4 The initial state . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5 Split operator in spherical coordinates 55 5.1 Reduced wave function in length and velocity gauge . . . . . 55 5.2 Choice of basis and space discretization . . . . . . . . . . . . 57 5.3 Cylindrically symmetric problems . . . . . . . . . . . . . . . . 58 5.3.1 Length gauge split operator . . . . . . . . . . . . . . . 61 5.3.2 Velocity gauge split operator . . . . . . . . . . . . . . 69 5.4 Non-cylindrically symmetric problems . . . . . . . . . . . . . 71 5.4.1 Split-operatorfornon-cylindricallysymmetricpotentials 72 5.4.2 Superposition of cylindrically symmetric problems . . 75 5.5 Solving the m-mixing problem by rotations . . . . . . . . . . 76 5.5.1 Basic ideas and principles . . . . . . . . . . . . . . . . 76 5.5.2 Numerical implementation . . . . . . . . . . . . . . . . 79 5.5.3 General applications . . . . . . . . . . . . . . . . . . . 81 5.6 Summary - computational complexity . . . . . . . . . . . . . 81 6 Parallelization of the split-operator algorithm 85 6.1 Split operator method – a parallel version . . . . . . . . . . . 87 6.1.1 Parallelization of the length gauge algorithm . . . . . 87 6.1.2 Parallelization of the velocity gauge algorithm. . . . . 91 7 A parallel algorithm for solving tridiagonal matrix equa- tions 95 7.1 Solution by LU factorization . . . . . . . . . . . . . . . . . . 95 7.2 A parallel algorithm . . . . . . . . . . . . . . . . . . . . . . . 96 7.2.1 Computational complexity . . . . . . . . . . . . . . . . 101 7.2.2 Benchmark - the one-dimensional Poisson equation . . 103 8 Relation between wave functions and experiments 107 8.1 Experimental aspects of strong-field ionization . . . . . . . . 107 8.1.1 Ionization yield – time of flight mass spectrometer . . 107 8.1.2 Above threshold ionization . . . . . . . . . . . . . . . 108 8.1.3 Fully differential momentum distribution . . . . . . . 109 8.2 Quantum mechanical theory of measurement . . . . . . . . . 110 8.2.1 Mixed states . . . . . . . . . . . . . . . . . . . . . . . 110 8.3 Ionization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8.3.1 Fully differential photoelectron spectrum . . . . . . . 112 8.3.2 Momentum distribution with scattering states . . . . . 114 CONTENTS iii 8.3.3 Obtaining integral properties . . . . . . . . . . . . . . 116 8.4 Simulation of an experiment . . . . . . . . . . . . . . . . . . . 118 8.4.1 Focal volume effects . . . . . . . . . . . . . . . . . . . 118 8.4.2 Abel transformation . . . . . . . . . . . . . . . . . . . 120 9 Numerical results 123 9.1 Partial wave expansion of scattering states . . . . . . . . . . . 123 9.1.1 Partialwaveexpansionforasphericallysymmetricpo- tential . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.1.2 Continuum in a spherical box . . . . . . . . . . . . . . 126 9.2 Strong-field ionization of noble gas atoms . . . . . . . . . . . 128 9.3 Strong-field ionization of arbitrarily oriented H + molecules . 131 2 9.3.1 Enhanced ionization . . . . . . . . . . . . . . . . . . . 131 9.3.2 Alignment dependent above threshold ionization . . . 135 10 Current status and future work 139 10.1 Numerical implementations of single active electron algorithms139 10.1.1 Optimization of the basis . . . . . . . . . . . . . . . . 139 10.2 Beyond the single active electron model . . . . . . . . . . . . 141 10.2.1 Two-electron dynamics . . . . . . . . . . . . . . . . . 141 10.2.2 Inclusion of nuclear motion . . . . . . . . . . . . . . . 142 iv CONTENTS Preface ThisthesisissubmittedtotheFacultyofScienceattheUniversityofAarhus, Denmark, in order to fulfil the requirements for obtaining the PhD degree in Physics. The studies have been carried out under the supervision of Associate Professor Lars Bojer Madsen at the Department of Physics and Astronomy, University of Aarhus, from August 2003 to July 2007. In this thesis, I have taken the opportunity to describe some techniques that are used to solve time dependent quantum mechanical problems. This subject is usually not suited for publication as regular physics papers. The broad readership within the physics community tends to find it particularly interesting to interpret the results that can be inferred from the final solu- tion. The detailed knowledge of how to obtain the solution is, on the other hand,mostly relevantonlyforafewnumberof scientists workinginthefield of computational physics. With this thesis I hope to shed light on various problems that computational physicists face nowadays. Notational conventions Atomic units (m = e = ~ = 1) will be used throughout this thesis unless e | | stated otherwise. Vectors and matrices will generally be zero-based (c-style convention), so that the elements of an N dimensional vector are enumerated between 0 and N 1. − Acknowledgements I thank Anders S. Mouritzen and my parents, Hanne D. Kjeldsen and Jens Kjeldsen, for proofreading this thesis. Thomas Kjeldsen, July, 2007 v vi Preface List of publications 1. T. K. Kjeldsen, C. Z. Bisgaard, L. B. Madsen, and H. Stapelfeldt Role of symmetry in strong-field ionization of molecules Phys. Rev. A 68, 063407 (2003) 2. T. K. Kjeldsen and L. B. Madsen Strong field ionization of N : length and velocity gauge strong field 2 approximation and tunnelling theory J. Phys. B 37, 2033 (2004) 3. T. K. Kjeldsen, C. Z. Bisgaard, L. B. Madsen, and H. Stapelfeldt Influence of molecular symmetry on strong-field ionization: Studies on ethylene, benzene, fluorobenzene, and chlorofluorobenzene Phys. Rev. A 71, 013418 (2005) 4. T. K. Kjeldsen and L. B. Madsen Strong-field ionization of diatomic molecules and companion atoms: Strong-field approximation and tunneling theory including nuclear mo- tion Phys. Rev. A 71, 023411 (2005) 5. T. K. Kjeldsen and L. B. Madsen Vibrational Excitationof Diatomic MolecularIons inStrong FieldIon- ization of Diatomic Molecules Phys. Rev. Lett. 95, 073004 (2005) 6. T. K. Kjeldsen and L. B. Madsen Comment on ”Strong-field ionization of laser-irradiated light homonu- clear diatomic molecules: A generalized strong-field approximation – linear combination of atomic orbitals model” Phys. Rev. A 73, 047401 (2006) 7. T. K. Kjeldsen and L. B. Madsen Strong-field ionization of atoms and molecules: The two-term saddle- point method Phys. Rev. A 74, 023407 (2006) 8. T. K. Kjeldsen, L. B. Madsen, and J. P. Hansen Ab initio studies of strong-field ionization of arbitrarily oriented H + 2 molecules Phys. Rev. A 74, 035402 (2006) 9. T. K. Kjeldsen and L. B. Madsen Alignment dependent above threshold ionization of molecules J. Phys. B 40, 237 (2007) vii 10. V. N. Ostrovsky, T. K. Kjeldsen, and L. B. Madsen Comment on ”Generalization of Keldysh’s theory” Phys. Rev. A 75, 027401 (2007) 11. L. A. A. Nikolopoulos, T. K. Kjeldsen, and L. B. Madsen Spectral and partial-wave decomposition of time-dependent wave func- tions on a grid: Photoelectron spectra of H and H + in electromagnetic 2 fields Phys. Rev. A 75, 063426 (2007) 12. T. K. Kjeldsen, L. A. A. Nikolopoulos, and L. B. Madsen Solvingthem-mixingproblemforthethree-dimensionaltime-dependent Schr¨odinger equation by rotations: application to strong-field ioniza- tion of H + 2 Phys. Rev. A 75, 063427 (2007) 13. L. A. A. Nikolopoulos, T. K. Kjeldsen, and L. B. Madsen Three-dimensional time-dependent Hartree-Fock approach for arbitrar- ily oriented molecular hydrogen in strong electromagnetic fields Phys. Rev. A 76, 033402 (2007) 14. C. B. Madsen, A. S. Mouritzen, T. K. Kjeldsen, and L. B. Madsen Effects of orientation and alignment in high-harmonic generation and above threshold ionization Phys. Rev. A 76, 035401 (2007) 15. M. Førre, S. Selstø, J. P. Hansen, T. K. Kjeldsen, and L. B. Madsen Molecules in intense XUV pulses: Beyond the dipole approximation in linearly and circularly polarized fields Phys. Rev. A 76, 035415 (2007) 16. L. B. Madsen, L. A. A. Nikolopoulos, T. K. Kjeldsen, and J. F. Her- nandez Extracting continuum information from Ψ(t) in time-dependent wave | i packet calculations Submitted for publication viii Preface

Description:
Wave packet dynamics studied by ab initio methods: Applications to strong-field ionization of atoms and molecules. Thomas Kim Kjeldsen. Department
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.