ebook img

Vortices in Unconventional Superconductors and Superfluids PDF

368 Pages·2002·16.771 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vortices in Unconventional Superconductors and Superfluids

Springer Series in SOLID-STATE SCIENCES 132 Springer-Verlag Berlin Heidelberg GmbH Springer Series in SOLID-STATE SCIENCES Series Editors: M. Cardona P. Fulde K. von Klitzing R. Merlin H.-J. Queisser H. Stormer The Springer Series in Solid-State Sciences consists of fundamental scientific books prepared by leading researchers in the field. They strive to communica te, in a systematic and comprehensive way, the basic principles as well as new developments in theoretical and experimental solid-state physics. 126 Physical Properties of Quasicrystals Editor: Z.M. Stadnik 127 Positron Annihilation in Semiconductors Defect Studies By R. Krause-Rehberg and H.S. Leipner 128 Magneto-Optics Editors: S. Sugano and N. Kojima 129 Computational Materials Science From Ab Initio to Monte Carlo Methods By K. Ohno, K. Esfarjani, and Y. Kawazoe 130 Contact, Adhesion and Rupture of Elastic Solids ByD. Maugis 131 Field Theories for Low-Dimensional Condensed Matter Systems Spin Systems and Strongly Correlated Electrons By G. Morandi, P. Sodano, A. Tagliacozzo, and V. Tognetti 132 Vortices in Unconventional Superconductors and Superfluids Editors: R.P. Huebener, N. Schopohl, and G.E. Volovik Series homepage - http://www.springer.de/phys/books/sss/ Volumes 1-125 are listed at the end of the book. R.P. Huebener, N. Schopohl, G.E. Volovik {Eds.} Vortices in Unconventional Superconductors and Superfluids With 106 Figures ·i· ~ Springer Professor Dr. R.P. Huebener Professor Dr. G.E. Volovik Eberhard-Karls-Universitat Tiibingen Landau Institute for Theoretical Physics Physikalisches Institut Kosygin Str. 2 Auf der Morgenstelle 14 117334 Moscow, Russia 72076 Tiibingen, Germany and Low Temperature Laboratory Professor Dr. N. Schopohl Helsinki University of Technology Eberhard-Karls-Universitat Tiibingen P.O. Box 2200 Lehrstuhl flir Theoretische Festkorperphysik 02015, Espoo, Finland Auf der Morgenstelle 14 72076 Tiibingen, Germany Series Editors: Professor Dr., Dres. h. c. Manuel Cardona Professor Dr., Dres. h. c. Peter Fulde* Professor Dr., Dres. h. c. Klaus von Klitzing Professor Dr., Dres. h. c. Hans-Joachim Queisser Max-Planck-Institut flir Festkorperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany * Max-Planck-Institut flir Physik komplexer Systeme, Nothnitzer Strasse 38 01187 Dresden, Germany Professor Dr. Roberto Merlin Department of Physics, 5000 East University, University of Michigan Ann Arbor, MI 48109-1120, USA Professor Dr. Horst Stormer Dept. Phys. and Dept. App!. Physics, Columbia University, New York, NY 10023 and Bell Labs., Lucent Technologies, Murray Hill, NJ 07974, USA Library of Congress Cataloging-in-Publication Data applied for. Die Deutsche Bibliothek -CIP-Einheitsaufnahme Vortices in unconventional superconductors and superfluids/R.P. Huebener ... (ed.). - Berlin; Heidelberg; New York; Barcelona; Hong Kong; London; Milan; Paris; Singapore; Tokyo: Springer, 2002 (Springer series in solid-state sciences; 132) (Phsyics and astronomy online library) ISSN 0171-1873 ISBN 978-3-642-07613-8 ISBN 978-3-662-04665-4 (eBook) DOI 10.1007/978-3-662-04665-4 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. Springer-Verlag Berlin Heidelberg New York a member of BertelsmannSpringer Science+Business Media GmbH http://www.springer.de © Springer-Verlag Berlin Heidelberg 2002 Originally published by Springer-Verlag Berlin Heidelberg New York in 2002. Softcover reprint of the hardcover 1s t edition 2002 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: camera-ready copies by the authors Cover concept: eStudio Calamar Steinen Cover production: design & production GmbH, Heidelberg Printed on acid-free paper SPIN: 10838764 57/3141tr -5 43 2 1 0 Preface The physics of vortices in classical fluids has been a highly important subject for many years, both in fundamental science and in engineering applications. About 50 years ago, vortices started to become prominent as quantum me chanical objects constructed from a macroscopic wavefunction. Here the key developments are associated with the names R. Feynman, L. Onsager, L. D. Landau, F. London, V.L. Ginzburg and A.A. Abrikosov. Recently, the physics of vortices has undergone a further important step of diversification, namely in unconventional superconductors and superfluids, which are characterized by an anisotropic and/or spatially complex order parameter. It is this latest evolutionary step of vortex physics that is addressed in this book. The indi vidual chapters are concerned with the microscopic structure and dynamics of vortices in diverse systems ranging from superfluids and superconductors to neutron stars. Each of the 20 chapters is written by one or more experts on the parti cular subject. Each chapter provides an introduction and overview, empha sizing theoretical as well as experimental work, and includes references to both recent and pioneering earlier developments. In this way non-expert rea ders will also benefit from these lecture notes. Hence, the book will be useful for all researchers and graduate students interested in the physics of vorti ces in unconventional superconductors and superfluids. It may also serve as supplementary material for a graduate course on low-temperature solid-state physics. The idea for this book originated from a workshop held in Dresden, Ger many from February 28 to March 3, 2000, at the Max-Planck-Institut Fur Physik Komplexer Systeme. The editors express their special thanks to Prof. Dr. P. Fulde and his staff from this Institute for their support and hospitality during the workshop. It is our privilege to thank the participants of the workshop for their contributions during the discussions. The quality of all the lectures and the enthusiasm shown by all the participants made the workshop a great success. We trust that this book will be similarly well received. Tiibingen, N. Schopohl, R. Huebener Moscow C.E. Volovik October 2001 Contents 1 The Beautiful World of the Vortex G.E. Volovik ................................................... 1 Part I Vortices in Superconductors, Superfiuids, Neutron Stars, and QFT 2 Type II Superconductors and Vortices from the 1950s to the 1990s A.A. Abrikosov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1 Preamble............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 History............................ . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Imaging........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 2.4 Pinning and Melting of the Vortex Lattice .................... 15 2.5 Other Kinds of Vortices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 17 References ..................................................... 19 3 What Can Superconductivity Learn from Quantized Vorticity in 3He Superfluids? G.E. Volovik, V.B. Eltsov, and M. Krusius . . . . . . . . . . . . . . . . . . . . . . . .. 21 3.1 Unconventional Quantized Vorticity. . . . . . . . . . . . . . . . . . . . . . . . .. 21 3.2 Special Features of 3He Superfluids . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 3.3 Continuous Vortices, Skyrmions and Merons. . . . . . . . . . . . . . . . . .. 25 3.4 Transformation from Singular to Continuous Vortex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 27 3.5 Vortex with Composite Core ................................ 28 3.6 Vortex Sheet .............................................. 28 3.6.1 Vortex-Sheet Structure in 3He-A . . . . . . . . . . . . . . . . . . . . . .. 28 3.6.2 Vortex Sheet in Rotating Superfluid . . . . . . . . . . . . . . . . . . .. 28 3.6.3 Vortex Sheet in Superconductor. . . . . . . . . . . . . . . . . . . . . . .. 30 3.7 Fractional Vorticity and Fractional Flux ...................... 30 3.8 Broken Symmetry in the Vortex Core. . . . . . . . . . . . . . . . . . . . . . . .. 32 3.8.1 Vortex Core Transition ............................... 32 3.8.2 Ferromagnetic Core .................................. 34 VIII Contents 3.8.3 Asymmetric Double Core ............................. 34 3.9 Vortex Formation by Intrinsic Mechanisms. . . . . . . . . . . . . . . . . . .. 34 3.9.1 Nucleation Barrier ................................... 35 3.9.2 Vortex Formation in a Hydrodynamic Instability. . . . . . . .. 36 3.9.3 Formation of Continuous Vortex Lines: Dependence of Critical Velocity on Core Size ............ 38 3.9.4 Formation of Vortex Sheet ............................ 41 3.9.5 Vortex Formation in Ionizing Radiation. . . . . . . . . . . . . . . .. 42 3.10 Vortex Dynamics Without Pinning. . . . . . . . . . . . . . . . . . . . . . . . . .. 43 3.11 Conclusion................................................ 44 References ..................................................... 45 4 Nucleation of Vortices in Superfluid 3He-B by Rapid Thermal Quench Igor S. Aranson, Nikolai B. Kopnin, and Valerii M. Vinokur . . . . . . . . .. 49 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 49 4.2 Model.................................................... 50 4.3 Results of Simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 51 4.4 Dynamics of Vortex/ Antivortex Annihilation. . . . . . . . . . . . . . . . .. 54 4.5 Instability of Normal-Superfluid Interface. . . . . . . . . . . . . . . . . . . .. 55 4.5.1 Stationary Solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 4.5.2 Linearized Equations .... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 56 4.5.3 Long-Wavelength Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 57 4.5.4 Large u Limit ....................................... 58 4.5.5 Estimate for the Number of Vortices. . . . . . . . . . . . . . . . . . .. 60 4.6 Generalization............................................. 61 4.7 Conclusion................................................ 62 References ..................................................... 63 5 Superfluidity in Relativistic Neutron Stars David Langlois ................................................. 65 5.1 Introduction............................................... 65 5.2 Superfluidity and Superconductivity. . . . . . . . . . . . . . . . . . . . . . . . .. 66 5.2.1 Composition of the Interior of a Neutron Star. . . . . . . . . . .. 66 5.2.2 Energy Gaps and Critical Temperature. . . . . . . . . . . . . . . .. 67 5.2.3 Various Equations of State. . . . . . . . . . . . . . . . . . . . . . . . . . .. 68 5.3 Cooling Processes in Neutron Stars. . . . . . . . . . . . . . . . . . . . . . . . . .. 68 5.4 Rotational Dynamics of Neutron Stars: Glitches ............... 69 5.4.1 The Two-Fluid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 69 5.4.2 Role of the Vortices .................................. 70 5.4.3 Origin of the Glitches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 5.5 Relativistic Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 5.5.1 Perfect Fluid in General Relativity. . . . . . . . . . . . . . . . . . . .. 74 5.5.2 Relativistic Superfluid ... . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 75 Contents IX 5.5.3 Superfluid-Superconducting l\'1ixtures . . . . . . . . . . . . . . . . . .. 76 5.6 Relativistic Neutron Stars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 78 5.6.1 Static Neutron Star .................................. 78 5.6.2 Oscillations of Superflllid Neutron Stars. . . . . . . . . . . . . . . .. 79 References ..................................................... 80 6 Superconducting Superfluids in Neutron Stars Brandon Carter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 83 6 .1 Introduction............................................... 83 6.2 Generic Category of 3-Constituent Superconducting Superfluid lVIodels ................................................... 84 6.3 The Semi-Macroscopic Application. . . . . . . . . . . . . . . . . . . . . . . . . .. 88 6.4 Phenomenological Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 92 References ..................................................... 96 Part II Vortex Dynamics, Spectral Flow and Aharonov-Bohm Effect 7 Vortex Dynamics and the Problem of the Transverse Force N.B. Kopnin ................................................... 99 7.1 Introduction............................................... 99 7.2 Boltzmann Kinetic Equation Approach ....................... 101 7.2.1 Localized Excitations ................................. 101 7.2.2 Delocalized Excitations ............................... 104 7.3 Forces .................................................... 105 7.3.1 Flux-Flow Conductivity ............................... 107 7.4 Transverse Force ........................................... 108 7.4.1 Low-Field Limit and Superfluid 3He .................... 111 7.5 Vortex Momentum ......................................... 113 7.5.1 Equation of Vortex Dynamics .......................... 114 7.5.2 Vortex Mass ......................................... 115 7.6 Conclusions ............................................... 117 References ..................................................... 117 8 Magnus Force and Aharonov-Bohm Effect in Superfluids Edouard Sonin ................................................. 119 8.1 Introduction ............................................... 119 8.2 The Magnus Force in Classical Hydrodynamics ................ 121 8.3 The Magnus Force in a Superfluid ............................ 124 8.4 Nonlinear Schrodinger Equation and Two-Fluid Hydrodynamics .............................. 125 X Contents 8.5 Scattering of Phonons by the Vortex in Hydrodynamics ......................................... 129 8.6 The Iordanskii Force and the Aharonov~Bohm Effect .............................. 133 8.7 Partial-Wave Analysis and the Aharonov~Bohm Effect .............................. 136 8.8 Momentum Balance in Two-Fluid Hydrodynamics ............. 139 8.9 Magnus Force and the Berry Phase ........................... 142 8.10 Discussion and Conclusions ................................. 143 References ..................................................... 144 9 Lorentz Force Exerted by the Aharonov-Bohm Flux Line Andrei Shelankov and A.F. Ioffe .................................. 147 9.1 The Magnetic Scattering .................................... 150 9.1.1 Paraxial Solution ..................................... 150 9.1.2 Deflection of the Beam ................................ 152 9.1.3 Exact Solution ....................................... 154 9.1.4 Scattering Amplitude ................................. 156 9.2 The Momentum Balance .................................... 157 9.2.1 The Force ........................................... 159 9.2.2 The AB~Line ........................................ 160 9.3 Conclusions ............................................... 161 9.4 Appendix: The Momentum~Flow Tensor for the Schrodinger Equation ............................... 163 9.5 Appendix: The Force: Arbitrary Wave ........................ 164 References ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 10 Relativistic Solution of Lordanskii Problem in Multi-Constituent Superfluid Mechanics B. Carter, D. Langlois, and R. Prix ............................... 167 10.1 Introduction ............................................... 167 10.2 Perfect Multiconstituent Fluid Dynamics ...................... 168 10.3 Specification of Lift Force on Vortex .......................... 169 10.4 Generalised Joukowski Theorem ............................. 170 10.5 Application to the Landau Model ............................ 171 References ..................................................... 173 11 Vortex Core Structure and Dynamics in Layered Superconductors M. Eschrig, D. Rainer, and J. A. Sauls ............................. 175 11.1 Introduction ............................................... 175 11.2 Nonequilibrium Transport Equations ......................... 177 11.2.1 Constitutive Equations ............................... 179 11.2.2 Linear Response ..................................... 181 Contents xr 11.3 Electronic Structure of Vortices .............................. 184 11.3.1 Singly Quantized Vortices for S-Wave Pairing ............ 185 11.3.2 Singly Quantized Vortices for D-Wave Pairing ........... 188 11.3.3 Vortices Pinned to Mesoscopic Metallic Inclusions ........ 191 11.3.4 Doubly Quantilled Vortices ............................ 193 11.4 Nonequilibrium Response ................................... 195 11.4.1 Dynamical Charge Response ........................... 197 11.4.2 Local Dynamical Conductivity ......................... 199 11.4.3 Induced Current Density .............................. 201 11.4.4 Summary ........................................... 202 References ..................................................... 202 Part III Fermion Zero Modes on Vortices 12 Band Theory of Quasiparticle Excitations in the Mixed State of d-Wave Superconductors Alexander S. Mel'nikov .......................................... 207 12.1 Introduction ............................................... 207 12.2 Basic Equations ........................................... 210 12.2.1 BdG Equations for a Spin Singlet Unconventional Super- conductor in a Magnetic Field ......................... 210 12.2.2 Quasiparticles Confined Near Gap Nodes ................ 212 12.3 A Single Isolated Vortex Line: Aharonov-Bohm Effect for Quasiparticles ..................... 213 12.4 Quasiparticle States in Vortex Lattices ....................... 214 12.4.1 Cyclotron Orbits in the Mixed State .................... 214 12.4.2 Quasiparticle Band Spectrum in Vortex Lattices ......... 215 12.4.3 Modified Semiclassical Approach for QP States in a Vortex Lattice ................................... 219 12.5 Conclusions ............................................... 222 References ..................................................... 222 13 Magnetic Field Dependence of the Vortex Structure Based on the Microscopic Theory Masanori Ichioka, Mitsuaki Takigawa and Kazushige Machida ........ 225 13.1 Introduction ............................................... 225 13.2 Magnetic Field Dependence of the Vortex Structure ..................................... 227 13.2.1 Quasiclassical Eilenberger Theory ...................... 227 13.2.2 Local Density of States ............................... 228 13.2.3 Pair Potential and Internal Field Distribution ............ 232 13.3 Site-Selective Nuclear Spin Relaxation Time ................... 233

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.