ebook img

Visualizing spacetimes via embedding diagrams PDF

0.62 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visualizing spacetimes via embedding diagrams

Visualizing spacetimes via embedding diagrams Stanislav Hledík, Zdeneˇk Stuchlík and Alois Cipko InstituteofPhysics,FacultyofPhilosophy&Science,SilesianUniversityinOpava, CZ-74601Opava,CzechRepublic Abstract. It is hard to imagine curved spacetimes of General Relativity. A simple but powerful way how to achieve this is visualizing them via embedding diagrams of both ordinary geometry and optical reference geometry. They facilitate to gain an intuitive insight into the gravitational field rendered into a curved spacetime, and to assess the influence of 7 parameterslikeelectricchargeandspinofablackhole,magneticfieldorcosmologicalconstant.Opticalreferencegeometry 0 and related inertial forces and their relationship to embedding diagrams are particularly useful for investigation of test 0 particlesmotion. Embedding diagramsof staticand sphericallysymmetric, orstationary andaxiallysymmetricblack-hole 2 andnaked-singularity spacetimesthuspresentausefulconcept forintuitiveunderstanding ofthesespacetimes’nature. We n concentrateongeneralwayofembeddinginto3-dimensionalEuclideanspace,andgiveasetofillustrativeexamples. a Keywords: Blackholes,nakedsingularities,ordinarygeometry,opticalreferencegeometry,embeddingdiagram J PACS: 04.20.-q,97.60.Lf,04.20.Dw,95.30.Sf 1 1 INTRODUCTION 2 v Theanalysisofembeddingdiagrams[1,2,3,4,5,6,7,8]rankamongthemostfundamentaltechniquesthatenable 7 understandingphenomenapresentin extremelystronggravitationalfieldsof blackholesandothercompactobjects. 3 2 Theinfluenceofcharge,spin,magneticfieldorcosmologicalconstantonthestructureofspacetimescansuitablybe 1 demonstratedbyembeddingdiagramsof2-dimensionalsectionsoftheordinarygeometry(t consthypersurfaces) 0 into3-dimensionalEuclideangeometryandtheirrelationtothewellknown‘Schwarzschildth=roat’[9]. 7 Propertiesofthemotionofbothmassiveandmasslesstestparticlescanbeproperlyunderstoodintheframeworkof 0 opticalreferencegeometryallowingintroductionoftheconceptofgravitationalandinertialforcesintheframeworkof / h generalrelativityinanaturalway[10,11,12,13,14,15,16,17,18],providingadescriptionofrelativisticdynamics p inaccordwithNewtonianintuition. - o Theopticalgeometryresultsfromanappropriateconformal(3 1)splitting,reflectingcertainhiddenpropertiesof + r the spacetimesunderconsiderationthroughtheir geodesicstructure. Letus recall the basic propertiesof the optical t s geometry.Thegeodesicsofthe opticalgeometryrelatedtostatic spacetimescoincidewith trajectoriesoflight,thus a being‘opticallystraight’[17, 19].Moreover,thegeodesicsare‘dynamicallystraight,’becausetestparticlesmoving : v alongthemareheldbyavelocity-independentforce[12];theyarealso‘inertiallystraight,’becausegyroscopescarried i alongthemdonotprecessalongthedirectionofmotion[13]. X Some fundamental properties of the optical geometry can be appropriately demonstrated namely by embedding r a diagrams of its representative sections [10, 3, 5]. Because we are familiar with the Euclidean space, 2-dimensional sectionsoftheopticalspaceareusuallyembeddedintothe3-dimensionalEuclideanspace.Insphericallysymmetric static spacetimes, the central planes are the most convenient for embedding – with no loss of generality one can consider the equatorial plane, choosing the coordinate system such that θ π/2. In Kerr–Newman backgrounds, = the most representative section is the equatorial plane, which is the symmetry plane. This plane is also of great astrophysicalimportance,particularlyinconnectionwiththetheoryofaccretiondisks[6]. In spherically symmetric spacetimes (Schwarzschild [17], Schwarzschild–deSitter [1], Reissner–Nordström [3], and Reissner–Nordström–deSitter [4]), an interesting coincidence appears: the turning points of the central-plane embedding diagrams of the optical space and the photon circular orbits are located exactly at the radii where the centrifugal force, related to the optical space, vanishes and reverses sign. The same conclusion holds for the Ernst spacetime[5]. However,intherotatingblack-holebackgrounds,thecentrifugalforcedoesnotvanishattheradiiofphotoncircular orbits[20,21].Ofcourse,thesamestatementistrueiftheserotatingbackgroundscarryanon-zeroelectriccharge. Throughoutthepaper,geometricalunits(c G 1)areused. = = OPTICALGEOMETRYAND INERTIAL FORCES The notions of the optical reference geometry and the related inertial forces are convenient for spacetimes with symmetries, particularly for stationary (static) and axisymmetric (spherically symmetric) ones. However, they can beintroducedforageneralspacetimelackinganysymmetry[18]. Assuming a hypersurfaceglobally orthogonalto a timelike unit vector field n and a scalar field 8 satisfying the conditionsn n 0, nκn 1, n nκ n 8, the 4-velocityu ofa test particleof restmass m can be κ λ µ κ λ κ λ λ ∇ = =− ˙ ≡ ∇ =∇ uniquelydecomposedas uκ γ(nκ vτκ). (1) = + Here,τ isaunitvectororthogonalton,v isthespeed,andγ (1 v2) 1/2. − = − Introducing,basedontheapproachofAbramowiczetal.[18],aprojected3-spaceorthogonaltonwiththepositive definite metric h giving the so-called ordinary projected geometry, and the optical geometry h by conformal κλ ˜κλ rescaling h e 28h , h g n n , (2) ˜κλ= − κλ κλ= κλ+ κ λ theprojectionofthe4-accelerationa hλuµ u canbeuniquelydecomposedintotermsproportionaltothezeroth, first, andsecondpowersofv, respecκ⊥ti=velyκ,an∇dµtheλvelocitychangev (e8γv) uµ. Thus,we arriveata covariant ,µ ˙ = definitionofinertialforcesanalogoustotheNewtonianphysics[18,22] ma G (v0) C (v1) Z (v2) E (v), (3) κ⊥= κ + κ + κ + κ ˙ wheretheterms G m 8 m8 , C mγ2vnλ( τ τ ), Z m(γv)2τλ τ , E mvτ , (4) κ =− ∇κ =− ,κ κ =− ∇λ κ−∇κ λ κ =− ˜ ∇˜λ˜κ κ =− ˙˜κ correspondtothegravitational,Coriolis–Lense–Thirring,centrifugalandEulerforce,respectively.Here,τ istheunit ˜ vectoralongτ intheopticalgeometryand isthecovariantderivativewithrespecttotheopticalgeometry. ∇˜ InthesimplecaseofstaticspacetimeswithafieldoftimelikeKillingvectorsn ξ ∂/∂t,wearedealingwith (t) ≡ = spacecomponentsthatwewilldenotebyLatinindicesinthefollowing.Themetriccoefficientsoftheopticalreference geometryaregivenbytheformula h e 28h , e28 g ξµξν g . (5) ˜ik = − ik =− µν (t) (t)=− tt Intheopticalgeometry,wecandefinea3-momentumofatestparticleanda3-forceactingontheparticle[18,23] pi e28pi, f e28f , (6) ˜ = ˜i = i where pi, f arespacecomponentsofthe4-momentum p andthe4-force f.Insteadofthefullspacetimeform,the i equationofmotiontakesthefollowingformintheopticalgeometry, mf pk p 1m2 8, (7) ˜i = ˜ ∇˜k ˜i+2 ∇˜i where represents the covariant derivative components with respect to the optical geometry. We can see directly ∇˜k that photon trajectories (m 0) are geodesics of the optical geometry. The first term on the right-hand side of (7) = correspondstothecentrifugalforce,thesecondonecorrespondstothegravitationalforce. InthecaseofKerr–Newmanspacetimes,detailedanalysis(see,e.g.,[21])leadstodecompositionintogravitational, Coriolis–Lense–Thirringandcentrifugalforces(4) G m8 m1∂ ln gt2φ−gttgφφ , (8) κ ,κ κ = − =− 2 " gφφ !# Cκ = mA2((cid:127)−(cid:127)LNRF)√gφφ ∂κ gtφgφ−φ1/2 +(cid:127)LNRF∂κ√gφφ , (9) 1 h (cid:16) (cid:17)g2 i Z mA2((cid:127) (cid:127) )2g ∂ ln φφ , (10) κ = −2 − LNRF φφ κ" gt2φ−gttgφφ!# respectively; we also denote ι e 8n. The Euler force will appear for (cid:127) const only, being determined by (cid:127) uλ (cid:127) (see [11]). Here we sh=all−concentrate on the inertial forces acting6=on the motion in the equatorial pl˙an=e λ ∇ (θ π/2)andtheirrelationtotheembeddingdiagramoftheequatorialplaneoftheopticalgeometry. = Clearly,bydefinition,thegravitationalforceisindependentoftheorbitingparticlevelocity.Ontheotherhand,both the Coriolis–Lense–Thirringandthe centrifugalforcevanish(atanyr) if(cid:127) (cid:127) , i.e.,if theorbitingparticleis LNRF = stationaryattheLNRFlocatedattheradiusofthecircularorbit;thisfactclearlyillustratesthattheLNRFareproperly chosen for the definition of the optical geometry and inertial forces in accord with Newtonian intuition. Moreover, bothforcesvanishatsomeradiiindependentlyof(cid:127).Inthecaseofthecentrifugalforce,namelythispropertywillbe imprintedintothestructureoftheembeddingdiagrams. EMBEDDING DIAGRAMS The propertiesof the (optical reference) geometry can convenientlybe represented by embeddingof the equatorial (symmetry)planeintothe3-dimensionalEuclideanspacewith lineelementexpressedin thecylindricalcoordinates (ρ,z,α)inthestandardform.Theembeddingdiagramischaracterizedbytheembeddingformulaz z(ρ)determin- = ingasurfaceintheEuclideanspacewiththelineelement dz 2 dℓ2 1 dρ2 ρ2dα2 (11) (E)=" +(cid:18)dρ(cid:19) # + isometrictothe2-dimensionalequatorialplaneoftheordinaryortheopticalspacelineelement[24] dℓ2 h dr2 h dφ2. (12) rr φφ = + Theazimuthalcoordinatescanbeidentified(α φ)whichimmediatelyleadstoρ2 h ,andtheembeddingformula φφ ≡ = isgovernedbytherelation dz 2 dr 2 h 1. (13) rr dρ = dρ − (cid:18) (cid:19) (cid:18) (cid:19) Itisconvenienttotransfertheembeddingformulaintoaparametricformz(ρ) z(r(ρ))withr beingtheparameter. = Then dz dρ 2 h . (14) rr dr =±s − dr (cid:18) (cid:19) The sign in this formula is irrelevant, leading to isometric surfaces. Because dz/dρ (dz/dr)(dr/dρ), the turning = points of the embedding diagram, giving its throats and bellies, are determined by the condition dρ/dr 0. The embeddingdiagramcanbeconstructediftherealityconditionh (dρ/dr)2 0holds. = rr − ≥ EXAMPLES OFEMBEDDING DIAGRAMS In this section we present graphic representations of embedding diagrams for various spacetimes with their brief description.Forfulltreatment,seethereferenceprovidedatthebeginningofeachsubsection. Schwarzschild spacetime withnonzero cosmologicalconstant The influence of cosmological constant on the structure of Schwarzschild–deSitter spacetime is treated in full technicaldetailsbyStuchlíkandHledík[1].Puttingy 3M2/3,t t/M,r r/M,whereMisthemassparameter ≡ → → and3denotesthecosmologicalconstant,thelineelementinstandardSchwarzschildcoordinatesreads ds2 1 2 yr2 dt2 1 2 yr2 −1dr2 r2(dθ2 sin2θdφ2). (15) =− −r − + −r − + + (cid:18) (cid:19) (cid:18) (cid:19) Embedding diagrams of the ordinary geometry are given by the formula z z(r), which can be obtained by = integratingtherelation dz 2 yr3 1/2 + . (16) dr = r 2 yr3 (cid:18) − − (cid:19) In the case of Schwarzschild–deSitter spacetimes, the embedding can be constructed for complete static regions betweentheblack-hole(r )andcosmological(r )horizons.Recallthatthestaticregionexistsfor y 1/27only.In h c ≤ thecaseofSchwarzschild–anti-deSitterspacetimes,thestaticregionextendsfromtheblack-holehorizontoinfinity. However,wecanseedirectlyfromEq.(16)thattheembeddingdiagramsoftheordinaryspacecanbeconstructedin alimitedpartofthestaticregion,locatedbetweentheblack-holehorizonr andr ( 2/y)1/3. h e(ord) = − Embeddingdiagramsofopticalreferencegeometryaregivenbyparametricformulasz z(r),ρ ρ(r): = = dz r 4r−9−yr4 1/2, ρ r 1 2 yr2 −1/2. (17) dr = r 2 yr3 r(r 2 yr3) = −r − − − (cid:20) − − (cid:21) (cid:18) (cid:19) Theembeddingformulaz z(ρ)canthenbeconstructedbyanumericalprocedure.Further,itcanbeshown[1]that = ‘turningradii’oftheembeddingdiagramsaregivenbytheconditiondρ/dr 0.Since = dρ 1 3 1 2 yr2 −3/2, (18) dr = −r −r − (cid:18) (cid:19)(cid:18) (cid:19) we cansee thattheturningradiusdeterminingathroatoftheembeddingdiagramoftheopticalgeometryislocated justatr 3,correspondingtotheradiusofthephotoncircularorbit;itisexactlythesameresultasthatobtainedin = the pureSchwarzschildcase. The radiusof the photoncircularorbitis importantfromthe dynamicalpointof view, becausethecentrifugalforcerelatedtotheopticalgeometryreversesitssignthere[17,23].Abovethephotoncircular orbit, the dynamicsis qualitativelyNewtonianwith the centrifugalforce directedtowardsincreasingr. However,at r 3,thecentrifugalforcevanish,andatr <3M itisdirectedtowardsdecreasingr. Thephotoncircularorbit,the = throatofthe embeddingdiagramoftheopticalgeometry(dρ/dr 0),andvanishingcentrifugalforce,allappearat = theradiusr 3. = In the case of Schwarzschild–deSitter spacetimes containing the static region, the embeddability of the optical geometryis restrictedbothfrombelow,andfromabove.Usinga numericalprocedure,theembeddingdiagramsare constructedforthesamevaluesof y asinthecaseoftheordinarygeometry. InthecaseofSchwarzschild–anti-deSitterspacetimes,theembeddabilityoftheopticalgeometryisrestrictedfrom belowagain;with y thelimitshiftstor 0,alongwiththeradiusoftheblack-holehorizon.Theembedding →−∞ → 3 3 y=-0.01 y=-10-4 2.5 y=10-6 2.5 y=-0.03 y=-0.003 y=0 y=10-4 2 2 y=0.002 y=0 y=0.002 logz1.51 y=0.03 y=0.02 y=-10-6 logz1.51 (a) (b) y=-0.002 y=0.02 0.5 yy==--00..0032 0.5 y=0.03 0 0 0 0.5 1 l1o.g5r 2 2.5 3 0.6 0.8 1 1l.o2gρ1.4 1.6 1.8 (c) (d) FIGURE1. Leftpanel:QualitativefeaturesoftheembeddingdiagramsoftheordinarygeometryoftheSchwarzschild–deSitter andSchwarzschild–anti-deSitterspacetimesinalog-logdiagram.Onecanimmediatelyseehowthediagramswithy 0‘peeloff’ 6= thepureSchwarzschilddiagram(y 0,boldcurve).Allsectionswithy 0arecomplete(i.e.,themaximumthatcanbeembedded = 6= intoEuclideanspaceisshown),exceptuninterestinglowerpartsofthethroats.Thediagramsclearlyindicatemodificationsofthe spacetimestructurecausedbythepresenceofacosmologicalconstant.Middlepanel:Sameasleftpanelbutforopticalgeometry. Rightpanel: Exampleofembedding diagramsoftheopticalreferencegeometryoftheSchwarzschild–deSitterspacetimes.The pureSchwarzschildcaseistakenforcomparisonin(a).Thediagramsaregivenfor(b) y 10 6,(c)y 0.002,and(d)y 0.03. − = = = TheyaresimilartothepureSchwarzschildcase,becausetheregionnearthecosmologicalhorizonbeingofhighlydifferentcharacter is‘cutoff’bythelimitofembeddability.Takenfrom[1]. diagramsareconstructedbythenumericalprocedureforthesamevaluesofyasfortheordinaryspace.Thesediagrams have a special property, not present for the embedding diagrams in the other cases. Namely, they cover whole the asymptoticpartoftheSchwarzschild–anti-deSitterspacetime,butinarestrictedpartoftheEuclideanspace.Thisis clearfromtheasymptoticbehaviorofρ(r).Forr ,thereisρ ( y) 1/2.Clearly,withdecreasingattractive − →+∞ ∼ − cosmological constant the embedding diagram is deformed with increasing intensity. The circles of r const are concentratedwithanincreasingdensityaroundρ ( y) 1/2asr . = − = − →∞ BasicfeaturesoftheembeddingdiagramsoftheSchwarzschild–deSitterspacetimesareillustratedinFigure1. Interior uniform-density Schwarzschild spacetimewithnonzero cosmologicalconstant Theinfluenceofthecosmologicalconstantonthestructureofinterioruniform-densitySchwarzschildspacetimeis treatedinfulltechnicaldetailsbyStuchlíketal.[2]. ThelineelementinstandardSchwarzschildcoordinatesreads ds2 e28(r)dt2 e29(r)dr2 r2(dθ2 sin2θdϕ2), (19) =− + + + where r2 −1/2 1 2M 3 9M 3M 3R3 e9(r)= 1−a2 , e8(r)= Ae−9(R)−Be−9(r), a2 = R3 + 3 , A= 6M 3R3, B= 6M−3R3. (20) (cid:18) (cid:19) + + HereM denotestotalmass,ρ(uniform)massdensityandRexternalradiusoftheconfiguration;3isthecosmological constant.Examplesofembeddingdiagrams(forrepulsivecosmologicalconstant)areshowninFigure2. y=0.008 y=0.03 y=0 y=0.015 y=0.005 y=0 x=2.45 x=2.45 Ordinarygeometry Opticalgeometry FIGURE 2. Axial sections of the Schwarzschild–de Sitter (3>0) case. The dashed curve represents pure Schwarzschild spacetime, the dots mark the position of the edge of the internal spacetime (i.e., r R xM). The embedding diagrams of = = theoptical referencegeometryshow theexistenceofinternalcircularnullgeodesics whichplayakeyroleforthepossibilityof neutrinotrapping. Reissner–Nordström spacetimewithnonzero cosmologicalconstant Thissectionisbasedon[25],wherefull-detailtreatmentcanbefound.Putting y 13M2,e Q/M, t t/M, ≡ 3 ≡ → r r/M,whereMisthemassparameter,Qistheelectricchargeand3isthecosmologicalconstant,thelineelement → instandardSchwarzschildcoordinatesreads 2 e2 2 e2 −1 ds2 1 yr2 dt2 1 yr2 dr2 r2 dθ2 sin2θdφ2 . (21) =− −r +r2 − + −r +r2 − + + (cid:18) (cid:19) (cid:18) (cid:19) (cid:16) (cid:17) AnexampleofclassificationbasedonpropertiesofembeddingdiagramsofopticalreferencegeometryisinFigure3. H HH (cid:0) HH (cid:0) 00..22 HH (cid:0) 00 ddSS--NBSH--OO11 (cid:8)yh (maH(cid:8)x)Hj(cid:8)*6?d@I(cid:0)(cid:9)S@-NSd-SO-2NS-O3 AKAA --00..22 (cid:8)(cid:8) @ A yy A(cid:8)dS-BH-O1 --00..44(cid:8) AdS-N@S-O3 A (cid:8)(cid:8) yh (min) yextr (opt) @ A --00..66 AdS-NS-O1 @ notembeddable @ 00..2255 00..55 00..7755 11 11..2255 11..55 11..7755 ee22 FIGURE 3. An example classification of Reissner–Nordström spacetimes according to properties of embedding diagrams of opticalreferencegeometry.Takenfrom[25]. Ernst spacetime ThestaticErnstspacetime[26,5]istheonlyexactsolutionofEinstein’sequationsknowntorepresentthespacetime ofasphericallysymmetricmassivebodyorblackholeofmass M immersedinanotherwisehomogeneousmagnetic field.Ifthemagneticfielddisappears,thegeometrysimplifiestotheSchwarzschildgeometry.Therefore,sometimes theErnstspacetimeiscalledmagnetizedSchwarzschildspacetime.Usuallyitisbelievedthatforextendedstructures like galaxies both the effects of general relativity and the role of a magnetic field can be ignored. However, in the caseofactivegalacticnucleiwithahugecentralblackholeandanimportantmagneticfield,theErnstspacetimecan representsomerelevantpropertiesofthegalacticstructures.Therefore,itcouldevenbeastrophysicallyimportantto discussandillustratebasicpropertiesoftheErnstspacetime. The Ernst spacetime has the important property that it is not asymptotically flat. Far from the black hole, the spacetimeiscloselyrelatedtoMelvin’smagneticuniverse,representingacylindricallysymmetricspacetimefilledwith anuniformmagneticfieldonly.TheErnstspacetimeisaxiallysymmetric,anditsstructurecorrespondstothestructure oftheSchwarzschildspacetimeonlyalongitsaxisofsymmetry.Offtheaxis,thedifferencesareveryspectacular,and weshalldemonstratethemfortheequatorialplane,whichisthesymmetryplaneofthespacetime. ThelineelementoftheErnstspacetimereads ds2 32 1 2M dt2 1 2M −1dr2 r2dθ2 r2sin2θ dφ2, (22) = − − r + − r + + 32 " (cid:18) (cid:19) (cid:18) (cid:19) # where M M G/c2isthemass, B B G1/2/c2isthestrengthofthemagneticfield,3 1 B2r2sin2θ. cgs cgs ≡ ≡ ≡ + The dimensionless product BM 1 in astrophysically realistic situations. Really, BM 2 10 53B M . − cgs cgs ≪ ∼ × For example, in case of a black hole with M 109M (typical for AGN), the value BM 1 corresponds to B 1011Gauss,whichisunrealistic.Someillu=strativee⊙mbeddingdiagramsarecollectedinFi∼gure4. cgs ∼ B 0.2>B c = B 0.08<B c = FIGURE4. Leftcolumn:ordinarygeometry,rightcolumn:opticalgeometryofErnstspacetime.Itcanbeproved[5]thatacritical magneticfieldBc 0.0947exists.ForB>Bc,neitherthroatsnorbelliesandnocircularphotonorbitsexist.ForB<Bc,thethroat ≈ andthebellydevelop,correspondingtotheinnerunstableandouterstablephotoncircularorbit. Kerr–Newmanspacetimes Wefocusontheresultsconcerningtheopticalreferencegeometry[21].Itcanbeshown[21]thattheturningpoints oftheembeddingdiagramsarereallylocatedattheradiiwherethecentrifugalforcevanishesandchangessign.Thus, wecanconcludethatitisexactlythispropertyofopticalgeometryembeddingsforthevacuumsphericallysymmetric spacetimes (see [10, 3, 1]) survivesin the Kerr–Newmanspacetimes. However,photoncircular orbitsare displaced fromtheradiicorrespondingtotheturningpointsoftheembeddingdiagrams. Afterastraightforward,butrathertedious,discussion,thefullclassificationcanbemadeaccordingtotheproperties oftheembeddingdiagrams(see[21]). Examples of typical black-hole embedding diagrams of classes labeled in Stuchlík et al. [21] as BH –BH are 1 4 presentedinFigure5. 12 12 12 12 10 0.12 8 z 6 6 6 6 0.1 0.04 0.06 4 0.05 0.02 0 2 7.15 7.2 7.25 7.3 0 7 7.03 7.06 0 05 6 7 8ρ 9 10 11 05 7 9 11 05 7 7.119 7.1114 05 7 9 11 (a) (b) (c) (d) (e) FIGURE5. (a),(b):EmbeddingdiagramoftheKerr–NewmanblackholesofthetypeBH1,constructedfora2 0.16,e2 0.16. = = Theringsinthe3Ddiagramrepresentphotoncircularorbits.Bothcorotating(grayspotin2Ddiagram)andcounterrotating(black spot in 2D diagram) orbits are displaced from the throat of the diagram where the centrifugal force vanishes. This isa general propertyoftherotatingbackgrounds.(c)–(e):EmbeddingdiagramsoftheblackholesclassesBH –BH .(c)ClassBH (a2 0.7, 2 4 2 e2 0.16);(d)classBH3(a2 0.75,e2 0.16);(e)classBH4(a2 0.81,e2 0.16).Takenfrom[21]. = = = = = = CONCLUDINGREMARKS Embeddingdiagramsoftheopticalgeometrygiveanimportanttoolofvisualizationandclarificationofthedynamical behavior of test particles moving along equatorial circular orbits: we imagine that the motion is constrained to the surface z(ρ) (see [3]). The shape of the surface z(ρ) is directly related to the centrifugal acceleration. Within the upwardslopingareasoftheembeddingdiagram,thecentrifugalaccelerationpointstowardsincreasingvaluesofr and the dynamicsof test particles has an essentially Newtoniancharacter. However,within the downward sloping areas oftheembeddingdiagrams,thecentrifugalaccelerationhasaradicallynon-Newtoniancharacterasitpointstowards decreasingvaluesofr. Such a kindof behaviorappearswhere the diagramshavea throator a belly.Atthe turning pointsofthediagram,thecentrifugalaccelerationvanishesandchangesitssign. ACKNOWLEDGMENTS ThepresentworkwassupportedbythegrantMSM4781305903. REFERENCES 1. Z.Stuchlík,andS.Hledík,Phys.Rev.D60,044006(15pages)(1999). 2. Z.Stuchlík,S.Hledík,J.Šoltés,andE.Østgaard,Phys.Rev.D64,044004(17pages)(2001). 3. S.Kristiansson,S.Sonego,andM.A.Abramowicz,Gen.RelativityGravitation30,275–288(1998). 4. Z.Stuchlík,andS.Hledík,PropertiesoftheReissner–Nordströmspacetimeswithanonzerocosmologicalconstant(2002), unpublished,preprintTPA003/Vol.2,2001. 5. Z.Stuchlík,andS.Hledík,ClassicalQuantumGravity16,1377–1387(1999). 6. J.M.Bardeen,“TimelikeandNullGeodesicsintheKerrMetric,”inBlackHoles,editedbyC.D.Witt,andB.S.D.Witt, GordonandBreach,NewYork–London–Paris,1973,p.215. 7. Z. Stuchlík, “Accretion processes in black-hole spacetimes with arepulsive cosmological constant,” in Proceedings of RAGtime2/3:Workshopsonblackholesandneutronstars,Opava,11–13/8–10October2000/01,editedbyS.Hledík,and Z.Stuchlík,SilesianUniversityinOpava,Opava,2001,pp.129–167. 8. P.Slaný, “Someaspects of Kerr–deSitterspacetimesrelevant toaccretion processes,”inProceedings of RAGtime2/3: Workshopsonblackholesandneutronstars,Opava,11–13/8–10 October2000/01,editedbyS.Hledík,andZ.Stuchlík, SilesianUniversityinOpava,Opava,2001,pp.119–127. 9. C.W.Misner,K.S.Thorne,andJ.A.Wheeler,Gravitation,Freeman,SanFrancisco,1973. 10. M.A.Abramowicz,B.Carter,andJ.Lasota,Gen.RelativityGravitation20,1173(1988). 11. M.A.Abramowicz,P.Nurowski,andN.Wex,ClassicalQuantumGravity12,1467(1995). 12. M.A.Abramowicz,MonthlyNoticesRoy.Astronom.Soc.245,733–746(1990). 13. M.A.Abramowicz,MonthlyNoticesRoy.Astronom.Soc.256,710–718(1992). 14. M.A.Abramowicz,andJ.Bicˇák,Gen.RelativityGravitation23,941(1991). 15. M.A.Abramowicz,andJ.C.Miller,MonthlyNoticesRoy.Astronom.Soc.245,729(1990). 16. J.C.Miller,“RelativisticGravitationalCollapse,”inTheRenaissanceofGeneralRelativityandCosmology,editedbyG.Ellis, A.Lanza,andJ.Miller,CambridgeUniversityPress,Cambridge,1993,pp.73–85,aSurveytoCelebratethe65thBirthdayof DennisSciama. 17. M.A.Abramowicz,andA.R.Prasanna,MonthlyNoticesRoy.Astronom.Soc.245,720–728(1990). 18. M.A.Abramowicz,P.Nurowski,andN.Wex,ClassicalQuantumGravity10,L183(1993). 19. M.A.Abramowicz,J.Miller,andZ.Stuchlík,Phys.Rev.D47,1440–1447(1993). 20. S.Iyer,andA.R.Prasanna,ClassicalQuantumGravity10,L13–L16(1993). 21. Z.Stuchlík,S.Hledík,andJ.Juránˇ,ClassicalQuantumGravity17,2691–2718(2000). 22. J.M.Aguirregabiria,A.Chamorro,K.R.Nayak,J.Suinaga,andC.V.Vishveshwara,ClassicalQuantumGravity13,2179 (1996). 23. Z.Stuchlík,Bull.Astronom.Inst.Czechoslovakia41,341(1990). 24. Z.Stuchlík,andS.Hledík,ActaPhys.Slovaca49,795–803(1999). 25. Z.Stuchlík,andS.Hledík,ActaPhys.Slovaca52,363–407(2002). 26. F.J.Ernst,J.Math.Phys.17,54(1976).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.