ebook img

Visual and Spatial Analysis: Advances in Data Mining, Reasoning, and Problem Solving PDF

581 Pages·2004·13.631 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Visual and Spatial Analysis: Advances in Data Mining, Reasoning, and Problem Solving

VISUAL AND SPATIAL ANALYSIS Visual and Spatial Analysis Advances in Data Mining, Reasoning, and Problem Solving Edited by Boris Kovalerchuk Central Washington University, Ellensburg, WA, U.S.A. and James Schwing Central Washington University, Ellensburg, WA, U.S.A. A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 1-4020-2939-X (HB) ISBN 1-4020-2958-6 (e-Book) Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. Sold and distributed in North, Central and South America by Springer, 101 Philip Drive, Norwell, MA 02061, U.S.A. In all other countries, sold and distributed by Springer, P.O. Box 322, 3300 AHDordrecht, The Netherlands. Printed on acid-free paper springeronline.com All Rights Reserved ©2004 Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed in the Netherlands. TABLE OF CONTENTS Preface xiii PART 1. VISUAL PROBLEM SOLVING AND DECISION MAKING 1. Decision process and its visual aspects Boris Kovalerchuk 1. Current trends.....................................................................................3 2. Categories of visuals..........................................................................9 3. A modeling approach.......................................................................13 4. DMM model and discovery of relations...........................................16 5. Conceptual definitions......................................................................20 6. Visualization for browsing, searching, and decision making...........24 7. Task-driven approach to visualization..............................................25 8. Conclusion........................................................................................27 9. Acknowledgements..........................................................................27 10. Exercises and problems....................................................................27 11. References........................................................................................28 2. Information visualization value stack model Stephen G. Eick 1. The information visualization value stack problem.........................31 2. Where does information create high value?.....................................32 3. Information visualization sweet spot model.....................................40 4. Successful deployment models for information visualizations........42 5. Users of visualization software........................................................43 6. Conclusion........................................................................................44 7. Acknowledgements..........................................................................44 8. Exercises and problems....................................................................44 9. References........................................................................................45 vi PART 2. VISUAL AND HETEROGENEOUS REASONING 3. Visual reasoning and representation Boris Kovalerchuk 1. Visual vs. verbal reasoning...............................................................49 2. Iconic reasoning...............................................................................51 3. Diagrammatic reasoning...................................................................54 4. Heterogeneous reasoning..................................................................62 5. Geometric reasoning.........................................................................64 6. Explanatory vs. deductive reasoning................................................66 7. Application domains.........................................................................67 8. Human and model-based visual reasoning and representations.......70 9. Conclusion........................................................................................74 10. Exercises and problems....................................................................74 11. References........................................................................................75 4. Representing visual decision making: a computational architecture for heterogeneous reasoning Dave Barker-Plummer and John Etchemendy 1. Introduction......................................................................................79 2. Sentential natural deduction.............................................................81 3. Generalizing to heterogeneous deduction.........................................86 4. Generalizing to heterogeneous reasoning........................................95 5. Applications of the architecture......................................................105 6. Conclusions and further work........................................................106 7. Exercises and problems..................................................................107 8. References......................................................................................108 5. Algebraic visual symbolism for problem solving: iconic equations from Diophantus to the present Boris Kovalerchuk and James Schwing 1. Visual symbolism vs. text...............................................................111 2. Solving iconic equations and linear programming tasks................120 3. Conclusion......................................................................................127 4. Exercises and problems..................................................................127 5. References......................................................................................128 vii 6. Iconic reasoning architecture for analysis and decision making Boris Kovalerchuk 1. Introduction....................................................................................129 2. Storytelling iconic reasoning architecture......................................131 3. Hierarchical iconic reasoning.........................................................137 4. Consistent combined iconic reasoning...........................................139 5. Related work...................................................................................145 6. Conclusion......................................................................................149 7. Exercises and problems..................................................................150 8. References......................................................................................151 7. Toward visual reasoning and discovery: lessons from the early history of mathematics Boris Kovalerchuk 1. Introduction....................................................................................153 2. Visualization as illustration: lessons from hieroglyphic numerals.155 3. Visual reasoning: lessons from hieroglyphic arithmetic................162 4. Visual discovery: lessons from the discovery of π.........................164 5. Conclusion......................................................................................167 6. Exercises and problems..................................................................169 7. References......................................................................................170 PART 3. VISUAL CORRELATION 8. Visual correlation methods and models Boris Kovalerchuk 1. Introduction....................................................................................175 2. Examples of numeric visual correlations........................................181 3. Classification of visual correlation methods..................................189 4. Visual correlation efficiency..........................................................191 5. Visual correlation: formal definitions, analysis, and theory..........193 6. Conclusion......................................................................................202 7. Acknowledgements........................................................................203 8. Exercises and problems..................................................................203 9. References......................................................................................203 viii 9. Iconic approach for data annotating, searching and correlating Boris Kovalerchuk 1. Introduction....................................................................................207 2. Iconic queries.................................................................................210 3. Composite icons.............................................................................213 4. Military iconic language.................................................................215 5. Iconic representations as translation invariants..............................219 6. Graphical coding principles............................................................220 7. Perception and optimal number of graphical elements..................224 8. Conclusion......................................................................................227 9. Acknowledgments..........................................................................228 10. Exercises and problems..................................................................228 11. References......................................................................................228 10. Bruegel iconic correlation system Boris Kovalerchuk, Jon Brown, and Michael Kovalerchuk 1. Introduction....................................................................................231 2. The main concepts of the Bruegel iconic system...........................232 3. Dynamic icon generation for visual correlation.............................237 4. The Bruegel iconic language for automatic icon generation..........243 5. Case studies: correlating terrorism events......................................247 6. Case studies: correlating files and criminal events........................254 7. Case studies: market and health care.............................................256 8. Conclusions....................................................................................259 9. Acknowledgments..........................................................................260 10. Exercises and problems..................................................................260 11. References......................................................................................261 PART 4. VISUAL AND SPATIAL DATA MINING 11. Visualizing data streams Pak Chung Wong, Harlan Foote, Dan Adams, Wendy Cowley, L. Ruby Leung, and Jim Thomas 1. Introduction....................................................................................265 2. Related work...................................................................................267 3. Demonstration dataset and preprocessing......................................268 4. Multidimensional scaling...............................................................270 ix 5. Adaptive visualization using stratification.....................................271 6. Data stratification options and results............................................274 7. Scatterplot similarity matching.......................................................278 8. Incremental visualization using fusion...........................................280 9. Combined visualization technique.................................................286 10. Discussion and future work............................................................287 11. Conclusions....................................................................................298 12. Acknowledgments..........................................................................289 13. Exercises and problems..................................................................289 14. References......................................................................................289 12. SPIN! — an enterprise architecture for data mining and visual analysis of spatial data Michael May and Alexandr Savinov 1. Introduction....................................................................................293 2. The system overview......................................................................295 3. The system architecture..................................................................298 4. Analysis of spatial data...................................................................303 5. Conclusion......................................................................................314 6. Acknowledgements........................................................................315 7. Exercises and problems..................................................................315 8. References......................................................................................316 13. XML-based visualization and evaluation of data mining results Dietrich Wettschereck 1. Introduction....................................................................................319 2. The Predictive model markup language.........................................321 3. VizWiz: interactive visualization and evaluation...........................324 4. Related work...................................................................................330 5. Discussion......................................................................................331 6. Acknowledgements........................................................................331 7. Exercises and problems..................................................................332 8. References......................................................................................332 x 14. Neural-network techniques for visual mining clinical electroencephalograms Vitaly Schetinin, Joachim Schult, and Anatoly Brazhnikov 1. Introduction....................................................................................335 2. Neural network based techniques...................................................338 3. Evolving cascade neural networks.................................................342 4. GMDH-type neural networks.........................................................348 5. Neural-network decision trees........................................................355 6. A rule extraction technique............................................................366 7. Conclusion......................................................................................368 8. Acknowledgments..........................................................................368 9. Exercises and problems..................................................................368 10. References......................................................................................369 15. Visual data mining with simultaneous rescaling Evgenii Vityaev and Boris Kovalerchuk 1. Introduction....................................................................................371 2. Definitions......................................................................................374 3. Theorem on simultaneous scaling..................................................375 4. A test example................................................................................377 5. Discovering simultaneous scaling..................................................378 6. Additive structures in decision making..........................................380 7. Physical structures..........................................................................382 8. Conclusion......................................................................................384 9. Exercises and problems..................................................................385 10. References......................................................................................385 16. Visual data mining using monotone Boolean functions Boris Kovalerchuk and Florian Delizy 1. Introduction....................................................................................387 2. A method for visualizing data........................................................390 3. Methods for visual data comparison...............................................392 4. A method for visualizing pattern borders.......................................395 5. Experiment with a Boolean data set...............................................398 6. Data structures and formal definitions...........................................403 7. Conclusion......................................................................................404 8. Exercises and problems..................................................................405 9. References......................................................................................406 xi PART 5. VISUAL AND SPATIAL PROBLEM SOLVING IN GEOSPATIAL DOMAINS 17. Imagery integration as conflict resolution decision process: methods and approaches Boris Kovalerchuk, James Schwing, and William Sumner 1. Introduction....................................................................................409 2. Combining and resolving conflicts with geospatial datasets..........411 3. Measures of decision correctness...................................................422 4. Visualization...................................................................................426 5. Conflict resolution by analytical and visual conflation agents.......428 6. Conclusion......................................................................................431 7. Acknowledgements........................................................................432 8. Exercises and problems..................................................................432 9. References......................................................................................432 18. Multilevel analytical and visual decision framework for imagery conflation and registration George G. He, Boris Kovalerchuk, and Thomas Mroz 1. Introduction....................................................................................435 2. Image inconsistencies.....................................................................438 3. AVDM framework and complexities space...................................444 4. Conflation levels.............................................................................446 5. Scenario of conflation.....................................................................449 6. Rules for virtual imagery expert.....................................................454 7. Case study: pixel-level conflation based on mutual information...459 8. Conclusion......................................................................................470 9. Acknowledgements........................................................................471 10. Exercises and problems..................................................................471 11. References......................................................................................471 19. Conflation of images with algebraic structures Boris Kovalerchuk, James Schwing, William Sumner, and Richard Chase 1. Introduction....................................................................................473 2. Algebraic invariants.......................................................................475 3. Feature correlating algorithms........................................................491 4. Conflation measures.......................................................................500 5. Generalization: image structural similarity....................................507

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.