ebook img

Virtual Work and Shape Change in Solid Mechanics PDF

373 Pages·2017·4.869 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Virtual Work and Shape Change in Solid Mechanics

Springer Series in Solid and Structural Mechanics 7 Michel Frémond Virtual Work and Shape Change in Solid Mechanics Springer Series in Solid and Structural Mechanics Volume 7 Series editors Michel Frémond, Roma, Italy Franco Maceri, Roma, Italy More information about this series at http://www.springer.com/series/10616 é Michel Fr mond Virtual Work and Shape Change in Solid Mechanics 123 Michel Frémond Department ofCivil Engineering andComputer Science University of Rome“Tor Vergata” Rome Italy ISSN 2195-3511 ISSN 2195-352X (electronic) SpringerSeries inSolid andStructural Mechanics ISBN978-3-319-40681-7 ISBN978-3-319-40682-4 (eBook) DOI 10.1007/978-3-319-40682-4 LibraryofCongressControlNumber:2016945146 ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface Mechanics is the science of motion: It predicts the motion we see with our eyes. Motion is involved in most scientific activities and in most engineering work. The importanceofthistopichasresultedinanaxiomatizationofmechanicsandtohave mathematics together with experiments to be tools widely used. Thereisalargevarietyofmotionsweseewithoureyes:themotionofthefloor of a room, the motionof the grains of a sand pile, the motionof a debris flow, the motionofgalaxies,etc.Theelementswhichareusedbyengineersandscientiststo describe them may seem different. But these theories have in common the concepts to describe the motion. The equationsofmotionareeithersimpleorverysophisticated.Thesophisticationmay result from the need to define and quantify precisely together the shape of the systemwhichisconsideredandtheevolutionofthisshape,i.e.,theshapechangeor the deformation of the system, and the velocity of deformation. A tool to introduce the mechanical effects of the evolution of the shape of a system is the principle of virtual work. It has a status which is perhaps too theo- retical even if it is widely used in numerics with the so-called variational formu- lations [1]. We show it is actually related to observation and experiments. Its utilization is flexible and may be adapted to produce predictive theories of numerous phenomena. PartIisdevotedtorelatethevirtualworkprincipletowhatweseewithoureyes. Part II shows how flexible it is. A large number of examples are given. The principle is applied in Part III to predict the motion of solids with large deformations. The principle requires the description of the deformations: the way theshapeofsolidschanges.Weknowthattherearealargevarietyofpossibilities. Thechoicehastobeassimpleaspossible,butithastocopewiththeeverydaylife actions. It results from observations that third-order derivatives with respect to space of the displacement are needed to have a coherent description of large deformations. Once the principle has defined the internal forces and given the equations of motion,wehavetofacethederivationoftheconstitutivelawswhichdescribehow v vi Preface amaterialbehaves.Equationsofmotionaregeneral.Constitutivelawsarepeculiar to each material. Theory and observation intervene in the derivation of the con- stitutive laws. For what concerns theory, the Clausius–Duhem inequality is the usefultool.Forwhatconcernsobservation,experimentsguidethechoiceofthefree energy and the choice of the pseudo-potential of dissipation. FollowingtheexamplesofPartsIandII,weidentifyaninternalconstraintonthe elongation matrix velocity. Following the way Lagrange takes into account an internalconstraint,uneliaisonparfaiteinFrenchandunvincoloperfettoinItalian, we introduce a reaction [2]. As usual in Lagrangian mechanics, this reaction is givenbyboththeconstitutivelawsandtheequationsofmotion.Itisimpossibleto derive entirely the value of the reaction with a constitutive law. It depends on the whole solid and on the external actions. These problems have been investigated at the Università degli Studi di Roma “Tor Vergata” in the Dipartimento di Ingegneria Civile e Ingegneria Informatica and in the framework of the Laboratorio Lagrange, bringing together Italian and French scientists. Some of the topics have been taught in lectures given at the Scuola di Ingegneria of the Università. The author discussed his points of view with Profs. Franco Maceri, Olivier Maisonneuve,andChristianLicht.Hethanksthemfortheirwatchfulviews.Hehas appreciated the professional and kind interest of Profs. Elena Bonetti, Pierluigi Colli,MauroFabrizio,BernardNayroles,andClaudeStolz.DoctorDanieleBianchi was helpful to solve editing problems, and the students of the Università have provided numerical illustrations while attending the lectures. All of them are warmly thanked. Rome, Italy Michel Frémond References 1. M.Frémond,Méthodesvariationnellesencalculdesstructures,ÉcolenationaledesPontset Chaussées,Paris(1982) 2. J.L.Lagrange,Méchaniqueanalytique,ChezLaVeuveDesaint,Libraire,Paris(1788) Contents Part I The Principle of Virtual Work 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 The System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 The Principle of Virtual Work. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 What We See: The Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.1 The Actual Velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.2 The Virtual Velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4.3 The Abstract Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 5 The Actions Which are Applied to the System: The Work of the External Forces. . . . . . . . . . . . . . . . . . . . . . . . . 13 5.1 The Abstract Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 6 What We See: The Velocities of Deformation . . . . . . . . . . . . . . . . 15 6.1 The Rigid System Velocities . . . . . . . . . . . . . . . . . . . . . . . . 16 6.2 The Abstract Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 7 The Work to Change the Shape of the System . . . . . . . . . . . . . . . 19 7.1 The Abstract Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 8 The Work to Change the Velocities of the System. . . . . . . . . . . . . 23 8.1 The Abstract Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 8.1.1 The Theorem of the Kinetic Energy . . . . . . . . . . . . 25 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 vii viii Contents 9 The Principle of Virtual Work and the Equations of Motion . . . . . 27 9.1 The Abstract Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.2 How to Get the Principle of Virtual Work from Experiments?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 9.2.1 The Smooth Evolution . . . . . . . . . . . . . . . . . . . . . 29 9.2.2 The Non Smooth Evolution. . . . . . . . . . . . . . . . . . 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 10 Summary of the Abstract Setting to get the Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Part II Examples 11 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 12 Two Points on a Line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 12.1 The Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 12.2 The Velocities of Deformation. . . . . . . . . . . . . . . . . . . . . . . 37 12.2.1 The Rigid System Velocities . . . . . . . . . . . . . . . . . 38 12.3 The Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 12.4 The Equations of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 13 Three Disks in a Plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 13.1 The Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 13.2 The Velocities of Deformation. . . . . . . . . . . . . . . . . . . . . . . 41 13.2.1 The Rigid System Velocities . . . . . . . . . . . . . . . . . 42 13.3 The Powers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 13.4 The Equations of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 44 14 Three Balls on a Plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 14.1 The System and the Velocities. . . . . . . . . . . . . . . . . . . . . . . 47 14.2 The Velocities of Deformation. . . . . . . . . . . . . . . . . . . . . . . 47 14.2.1 The Rigid System Velocities . . . . . . . . . . . . . . . . . 49 14.3 The Powers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 14.4 The Equations of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 49 14.4.1 The Theorem of the Kinetic Energy . . . . . . . . . . . . 50 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 15 A Deformable Solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 15.1 The Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 15.2 A Sophisticated Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 15.2.1 The Velocities of Deformation. . . . . . . . . . . . . . . . 55 15.2.2 The Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 15.2.3 The Equations of Motion. . . . . . . . . . . . . . . . . . . . 56 15.2.4 The Theorem of the Kinetic Energy . . . . . . . . . . . . 57 15.2.5 The State Quantities . . . . . . . . . . . . . . . . . . . . . . . 57 Contents ix 15.2.6 The Quantities Which Describe the Evolution . . . . . 57 15.2.7 The Energy Balance . . . . . . . . . . . . . . . . . . . . . . . 57 15.2.8 The Second Law . . . . . . . . . . . . . . . . . . . . . . . . . 59 15.2.9 The Entropy Balance. . . . . . . . . . . . . . . . . . . . . . . 59 15.2.10 The Constitutive Laws. . . . . . . . . . . . . . . . . . . . . . 59 15.2.11 The Kinematic Compatibility Relationships . . . . . . . 62 15.2.12 The Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 15.2.13 The Angular Momentum Balance. . . . . . . . . . . . . . 63 15.3 A Less Sophisticated Theory. . . . . . . . . . . . . . . . . . . . . . . . 64 15.3.1 The Velocities of Deformation. . . . . . . . . . . . . . . . 64 15.3.2 The Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 15.3.3 The Equations of Motion. . . . . . . . . . . . . . . . . . . . 65 15.3.4 The State Quantity . . . . . . . . . . . . . . . . . . . . . . . . 65 15.3.5 The Quantities Which Describe the Evolution . . . . . 66 15.3.6 The Constitutive Laws. . . . . . . . . . . . . . . . . . . . . . 66 15.3.7 The Free Energy and the Actual Power of the Internal Forces . . . . . . . . . . . . . . . . . . . . . . 66 15.4 An Upgraded Theory with the Angular Velocity . . . . . . . . . . 73 15.4.1 The Velocities of Deformation. . . . . . . . . . . . . . . . 73 15.4.2 The Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 15.4.3 The Equations of Motion. . . . . . . . . . . . . . . . . . . . 74 15.4.4 The Constitutive Laws. . . . . . . . . . . . . . . . . . . . . . 74 15.4.5 The Kinematic Relationships . . . . . . . . . . . . . . . . . 76 15.5 The Classical Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 15.5.1 The Velocities of Deformation. . . . . . . . . . . . . . . . 77 15.5.2 The Powers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 15.5.3 The Equations of Motion. . . . . . . . . . . . . . . . . . . . 78 15.5.4 The Constitutive Laws. . . . . . . . . . . . . . . . . . . . . . 78 15.5.5 The Angular Momentum Balance. . . . . . . . . . . . . . 79 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 16 Two Deformable Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 16.1 The Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 16.2 The Velocities of Deformation. . . . . . . . . . . . . . . . . . . . . . . 81 16.2.1 The Rigid System Velocities . . . . . . . . . . . . . . . . . 82 16.3 The Powers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 16.4 The Equations of Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 16.5 Why the Contact Interaction of the Two Solids Is Described by a Force?. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 17 At a Distance Interactions: Continuum Reinforced by Fibers. . . . . 85 17.1 The Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 17.2 The Velocities of Deformation. . . . . . . . . . . . . . . . . . . . . . . 85 17.2.1 The Rigid System Velocities . . . . . . . . . . . . . . . . . 86

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.