HindawiPublishingCorporation ISRNMechanicalEngineering Volume2013,ArticleID645232,13pages http://dx.doi.org/10.1155/2013/645232 Research Article Vibroacoustical Analysis of Multiple-Layered Structures with Viscoelastic Damping Cores FeiLinandMohanD.Rao MichiganTechnologicalUniversity,Houghton,MI49931,USA CorrespondenceshouldbeaddressedtoFeiLin;[email protected] Received2December2012;Accepted16December2012 AcademicEditors:M.Ahmadian,R.Brighenti,S.W.Chang,J.Clayton,P.Dineva,andG.-J.Wang Copyright©2013F.LinandM.D.Rao.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense, whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited. Thispaperpresentsamodelingtechniquetostudythevibroacousticsofmultiple-layeredviscoelasticlaminatedbeamsusingthe Biotdampingmodel.Inthiswork,acompletesimulationprocedureforstudyingthestructuralacousticsofthesystemusinga hybridnumericalmodelispresented.Theboundaryelementmethod(BEM)wasusedtomodeltheacousticalcavity,whereasthe finiteelementmethod(FEM)wasthebasisforvibrationanalysisofthemultiple-layeredbeamstructure.Throughtheproposed procedure,theanalysiscaneasilybeextendedtoanothercomplexgeometrywitharbitraryboundaryconditions.Thenonlinear behaviorofviscoelasticdampingmaterialswasrepresentedbytheBiotdampingmodeltakingintoaccounttheeffectsoffrequency, temperature,anddifferentdampingmaterialsforindividuallayers.Thecurve-fittingprocedureusedtoobtaintheBiotconstants fordifferentdampingmaterialsforeachtemperatureisexplained.Theresultsfromstructuralvibrationanalysisforselectedbeams agreewithpublishedclosed-formresults,andresultsfortheradiatednoiseforasamplebeamstructureobtainedusingacommercial BEMsoftwarearecomparedwiththeacousticalresultsofthesamebeambyusingtheBiotdampingmodel. 1.Introduction for transverse displacement to include various boundary conditions. A paper by Rao [5] presented the equations of The traditional designs of free-layer, constrained-layer or motionofviscoelasticsandwichbeamswithvariousbound- sandwich-layer,dampingtreatmentusingviscoelasticmate- aryconditionsusingtheenergymethod.Theequationswere rialshavebeenaroundforoverfortyyears.Recentimprove- solved numerically, and a practical design guideline was ments in the understanding and application of the damp- presented.SimilartoRao’stheory,Cottle[6]usedHamilton’s ing principles, together with advances in materials science principletoderiveequationsofmotion.Thedampingcould and manufacturing, have led to many successful applica- also be increased by adding passive stand-off layer (PSOL) tions and the development of patch damping and multiple- and slotted stand-off layer (SSOL) to the layered systems. layered damping structures. The key point in any design Falugi [7] and Parin et al. [8] conducted theoretical and is to recognize that the damping material must be applied experimentalworkonafour-layeredpanelandafive-layered in such a way that it is significantly strained whenever the beamwithPSOLtreatment.RogersandParin[9]andYellin structure is deformed in the vibration mode under investi- et al. [10] have performed experimental investigations and gation.Numerousresearchershavesuccessfullyimplemented demonstrated that PSOL treatment increased the damping the passive constrained layer (PCL) and active constrained significantlyinaeronauticalstructuresandbeams.Yellinand layer (ACL) systems. In 1959, Kerwin [1] and Ross et al. colleagues [11, 12] also developed normalized equations of [2] presented a general analysis of viscoelastic material motion for beam, fully treated with PSOL using nonideal structure.Thedampingwasattributedtotheextensionand stand-offlayerassumption.Theequationsweresolvedusing shear deformations of the viscoelastic layers. Ditaranto [3] themethodofdistributedtransferfunctions[13]. developedsixth-orderequationsofmotionintermsofaxial Inadditiontotheclosed-formanalyticalapproach,many displacements and developed a closed-form solution.Mead researchers have used the finite element method (FEM), andMarkus[4]extendedthesixth-orderequationsofmotion the most popular numerical modeling method in building 2 ISRNMechanicalEngineering thenumericalmodelofthemultiplelayerssystem.In2000, 1Dapplication,LesieutreandLee[15]proposedananelastic Chen and Chan [14] studied four different types of integral displacementfield(ADF)techniquein1996andsuccessfully FEMmodelswiththeviscoelasticcores.Thenumericalstabil- extendeditsapplicationfromthe1-Dproblemtothe3-layer ityandaccuracyaswellasforconvergenceissueofthesefour sandwichbeamand3-Dproblems. differentFEMmodelsweredemonstratedbycomparingthe As far as the mini-oscillator damping models are con- numericalresultswiththosefromexperiments.Lesieutreand cerned, the complex shear modulus which is a function of Lee[15]proposeda3-node,10DOFFEMmodelforthethree- bothfrequencyandtemperaturecanbeexpressedbyaseries layerACLdampingbeam.ThisFEMmodelisadvantageous ofmini-oscillationperturbations.Biot[21]firstproposedthe in active control application due to its features of nonshear first-order relaxation function with the introduction of the lockingandadaptabilitytosegmentedconstraininglayers. “dissipativevariables”intothedynamicequationsusingthe OtherthantheHamiltonandFEMnumericalmethodsin theory of irreversible thermodynamics. In 2007, Zhang and buildingthemodels,otherresearchershaveproposedmany Zheng[22]utilizedtheBiotmodeltodescribethedynamic irregularmodelingtechniquesforthenumericalrepresenta- behavior of a viscoelastic structure. The dimension reduc- tion of continuous/discontinuous systems. Kung and Singh tion technique and nonlinear curve-fitting procedure were [16]calculatedthenaturalfrequenciesandlossfactorusing discussed in the paper. McTavish [23] developed another the Rayleigh-Ritz energy method and modal-strain energy mini-oscillator damping model called “GHM” by the usage technique in modeling a 3-layer patch damping structure. ofSecond-orderrelaxationfunction.ComparedwiththeBiot Theseapproximatemodelingmethodswerealsoextendedto model,theGHMmodelhasamorecomplicatedexpression rectangular damping patch of plates and shells with visco- and also requires better performance of the computational elastic cores. Zhang and Sainsbury [17] combined the Ger- tool. lerkinorthogonalfunctionwiththetraditionalfiniteelement Thepopularityoftheseintegral-formdampingmodelsin methodandsuccessfullyappliedtothevibrationanalysisof recentyearsbroughttworesearchinterests:nonlinearcurve thedampedsandwichplates. fittinganddimensionreduction.Theadvancedcurve-fitting While the FEM is used widely in the modeling of the techniques in the damping models guarantee the accuracy structure,manyresearcherssoughtforpropermathematical ofthenumericalrepresentationoftheactualshearmodulus modelstorepresentthedampingbehavioroftheviscoelastic data from the experiment. The dimension reduction tech- material,aswellasincorporatingthedampingmodelincom- nique increases the computational efficiency due to the ad- mercialFEMsoftwarepackages.Currently,manyFEMcom- ditional orders of equation in order to gain the frequency mercialsoftwareincorporatedampingmodelsbasedmostly independenceofthefrequency-formdampingmodel. onviscous/hystereticdamping.Someallowincorporationof Zhang et al. [24] converted the nonlinear curve-fitting damping energy dissipation in the time domain using the probleminfrequencydomainwithrespecttotheGHMpa- Prony series. None of these damping models, however, is rametersintotheconstrainednonlinearoptimizationprob- suitable to capture the damping behavior in the frequency lem.Theefficiencyandcorrectnessweredemonstratedfora domain,whichisthemostimportantissueinpredictingthe commercialviscoelasticmaterial. vibro-acousticalresponseofcomplexstructuralsystems.The Park et al. [25] examined the GHM damping model drawbackofthesedampingmodelsraisedconsiderableinter- withtheapplicationtotheFEMmethodassociatedwiththe est and motivation in the development of damping models Guyan reduction technique. The numerical example in this ofviscoelasticmaterialinthefrequencydomaincompatible researchleadstoanFEMmodelappliedtotheGHMdynamic withFEMsoftware.Thesedampingmodelscanbeclassified equation quantitatively without increasing the number of asderivativetypeandintegraltype. order. The“FractionalDerivative”isessentiallytherepresenta- Hao and Rao [26] carried out the optimum design of a tivedampingmodelinthederivativeformfamilyproposed three-layersandwichbeamforthevibrationanalysisin2005. byBagleyandTorvik[18]in1983.Thisdampingmodelnot In this research, the numerical model is a comprehensive onlydescribedthematerialpropertiesofviscoelasticdamp- formulationforathree-layerunsymmetricalsandwichbeam ing but so established the closed-form equation compatible withtwodifferentdampingmaterialsadjacenttoeachother. withtheFEMtechnique.Comparedwiththeotherintegral- Thecriterionoftheoptimizationistominimizethemassof formmodels,thefractionalderivativeisonlyabletocapture thestructurewhilemaximizingthesystemdamping.In2008, therelativelyweakfrequency-dependentinformation;how- Lee[27]publishedthesemicoupledvibroacousticalanalysis ever, it was an important milestone in the area of damping andoptimizationofasimplysupportedthree-layersandwich research. beam. The modal superposition method was used to inves- Lesieutre et al. [20] mathematically modeled the relax- tigate the vibration problem with the fractional derivative ationbehaviorofviscoelasticmaterialintermsofaugmenting dampingmodel.Theinterioracousticalproblemwasstudied thermodynamic field (ATF) in 1989. Initially, introducing a byBEMnumericaltechnique,andtheoptimizationproblem singleaugmentfield,thisdampingmodelprovidedtheability wasestablishedthroughtheappropriatesizingparametersof torepresentthelight-dampingbehavior,withtheapplication thesandwichbeam. of a 1D viscoelastic structure. In the subsequent research, Theobjectiveofthispaperistoextendthepreviouswork using a series of augment fields, the ATF model is able to by the authors [28] on the vibration analysis of a multiple- model the damping material of higher loss factor with the layeredbeamstructureincorporatingtheBiotdampingmod- weak frequency dependence. Remedying the limitation of eltosolvetheacousticproblemtopredicttheradiatednoise. ISRNMechanicalEngineering 3 𝑤𝑖 𝑤𝑗 𝑤𝑖 𝑤𝑗 𝑢 𝑢 𝑋 𝑖 𝑗 𝑢3𝑖 𝑢3𝑗 𝑋 𝑖 𝑗 𝜃𝑖 𝜃𝑗 𝑢1𝑖 𝑢1𝑗 𝜃𝑖 𝜃𝑗 Figure1:ConfigurationoftheelasticlayershowingtheDOF. Figure2:Configurationoftheconstraineddampinglayershowing theDOF. In this paper, we present a complete numerical procedure astheshapefunctionsarethefollowing: for the vibroacoustical analysis and design for a multiple- [N ] layer laminated damping beam. Results obtained from the f proposedvibrationanalysisarecomparedwiththeprevious = [1−3𝜉2+2𝜉3 (𝜉−2𝜉2+𝜉3)𝑙 0 3𝜉2−2𝜉3 (−𝜉2+𝜉3)𝑙 0], closed-formresultstoshowthevalidityofthisapproach.The radiated noise spectrum at selected field point shows good [N ]=[0 0 1−𝜉 0 0 𝜉], e agreement between the 2-D BEM acoustical analysis and (3) theresultwithoutsystemdampingcalculatedbycommercial software for a sample viscoelastic damping structure. The inwhich𝜉:thelocalcoordinate,𝜉 = 𝑥/𝑙,𝜉 ∈ [0,1], 𝑙:longi- acousticalsolutionisdemonstrated,andthecorrelationbe- tudinallengthofelasticlayer, 𝐴:cross-sectionalareaofthe tween sound pressure level (SPL) and the loss factor is also elastic layer, 𝐸: Young’s modulusof the elastic layer, and 𝐼: highlighted. momentofinertiaofelasticlayer. Similarly,theelementmassmatrixcanbeexpressedas: 2.FEMModelingandtheBiot 1 DynamicEquation [⏟⏟M⏟⏟⏟⏟]⏟⏟𝑒el⏟a⏟s⏟⏟t⏟i⏟c⏟=∫ 𝑚𝑙([⏟⏟N⏟⏟f⏟⏟]⏟𝑇[⏟⏟N⏟⏟f⏟⏟]⏟+[Ne]𝑇[Ne])𝑑𝜉. (4) 0 6×6 6×1 1×6 TheFEMmodelingprocedureandtheestablishmentofthe Biotdynamicequationwillbediscussedinthissection.The 2.2.FEMModelingofFundamentalComponentII:TheCon- structurechosenforillustrationisaseven-layerviscoelastic strainedDampingLayer. TheFEMmodeloftheconstrained sandwichbeam.Theelasticbeamandtheconstraineddamp- layoutcontainingthedampinglayersandwichedbetweentwo inglayerarethetwofundamentalcomponentsinthisFEM- outerlayersisshowninFigure2.ThisFigureillustrateseach modeling technique. The concept of transfer matrix is used element consisting of 2 nodes and 8 DOF, where the nodal toconvertthelocalcoordinatestotheglobalcoordinatesin displacementvectorisasfollows: order to assemble and construct the complete model of the sandwichdampingstructurewitharbitrarynumberoflayers. {𝛿}𝑒cons =(⏟⏟𝑤⏟⏟⏟𝑖⏟⏟⏟⏟⏟𝜃⏟⏟𝑖⏟⏟⏟⏟𝑢⏟⏟⏟1⏟𝑖⏟⏟⏟⏟𝑢⏟⏟⏟3⏟⏟𝑖⏟⏟⏟⏟|⏟⏟𝑤⏟⏟⏟⏟𝑗⏟⏟⏟⏟⏟𝜃⏟⏟𝑗⏟⏟⏟⏟⏟𝑢⏟⏟1⏟⏟𝑗⏟⏟⏟⏟𝑢⏟⏟⏟3⏟⏟𝑗⏟)⏟⏟⏟𝑇⏟. (5) TheBiotviscoelasticdampingmodelwillbeusedtodescribe 8×1 the damping behavior. Through the use of the FEM, the Throughtheintroductionoftransfermatrix, structureisdiscretizedwhichwillenabletheuseoftheBiot dampingmodelfordifferentdampinglayersinthestructure. [T ]=[e e e e e e ]𝑇; I 1 2 3 5 6 7 Thereaderisreferredtothenomenclatureforthedefinition (6) ofdifferentvariablesusedinthederivation. [T ]=[e e e e e e ]𝑇, III 1 2 4 5 6 8 2.1.FEMModelingofComponentI:TheElasticLayer. Figure1 in which each ei means the following vector: ei = showstheelasticlayerintheFEMmodel,containing2nodes (00⋅⋅⋅⋅⋅⋅ ⏟⏟⏟⏟1⏟⏟⏟ ⋅⋅⋅⋅⋅⋅0)𝑇; the element elastic stiffness and the 𝑖thplace and6degreesoffreedom(DOF).Theelementdisplacements elementviscoelasticstiffnessmatrixforthis3-layercompo- ofeachnodecanbeexpressedasfollows:z nent,respectively,arethefollowing: {𝛿}𝑒elastic =(⏟⏟𝑤⏟⏟⏟𝑖⏟⏟⏟⏟⏟𝜃⏟⏟𝑖⏟⏟⏟⏟𝑢⏟⏟⏟𝑖⏟⏟⏟⏟|⏟⏟⏟𝑤⏟⏟⏟𝑗⏟⏟⏟⏟⏟𝜃⏟⏟𝑗⏟⏟⏟⏟⏟𝑢⏟⏟𝑗⏟⏟)⏟⏟⏟)⏟⏟𝑇⏟. (1) [Ke]c𝑒ons = [TI]𝑇⋅[Ke]elastic⋅[TI] 6×1 +[T ]𝑇⋅[K ] ⋅[T ], Thestiffnessmatrixcanbederivedbasedonthefollowing III e elastic III energymethod: 1 𝐺 𝐴 𝑙 N −N ℎ 1 𝜕N 𝑇 [K ]𝑒 = ∫ 2 2 [ e1 e3 + 0 ⋅ ⋅ f1] [K ]𝑒 = ∫1 𝐸𝐴[𝜕Ne]𝑇[𝜕Ne]𝑑𝜉 v cons 0 𝑘ℎ2 ℎ2 ℎ2 𝑙 𝜕𝜉 e elastic 0 𝑙 ⏟⏟⏟⏟⏟⏟𝜕⏟𝜉⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟𝜕⏟𝜉⏟⏟⏟⏟⏟⏟ N −N ℎ 1 𝜕N ×[ e1 e3 + 0 ⋅ ⋅ f1]𝑑𝜉, 6×1 1×6 ℎ ℎ 𝑙 𝜕𝜉 (2) 2 2 +∫1 𝐸𝐼[𝜕2Nf]𝑇[𝜕2Nf]𝑑𝜉, ⏟[⏟N⏟⏟⏟e⏟1⏟⏟]⏟=[⏟⏟N⏟⏟e⏟⏟]⏟⏟[⏟⏟T⏟I⏟⏟]⏟; [Ne3]=[Ne][TIII], ⏟⏟⏟0⏟⏟⏟⏟⏟⏟𝑙⏟⏟⏟⏟⏟⏟⏟⏟⏟𝜕⏟⏟⏟2⏟⏟𝜉⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝜕⏟⏟⏟𝜉⏟⏟2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 1×8 1×66×8 6×6 (7) 4 ISRNMechanicalEngineering where𝐴2:cross-sectionalareaofthedampinglayer,𝐺2:long- 𝑤𝑖 𝑤𝑗 termshearmodulusofthedampinglayer,and𝑘:correction 𝑢 𝑢 factor of the shear strain energy, for the rectangular cross- 7𝑖 7𝑗 section,𝑘=1.2. 𝑢 𝑢 Also,theelementmassmatrixforthis3-layercomponent 5𝑖 5𝑗 𝑋 𝑗 is 𝑖 𝑢 𝑢 3𝑖 3𝑗 [M]𝑒 = [T ]𝑇⋅[M] ⋅[T ]+[M]𝑒 cons I elastic I cons,2 (8) 𝜃𝑖 𝑢1𝑖 𝑢1𝑗 𝜃𝑗 +[T ]𝑇⋅[M] ⋅[T ], III elastic III Figure3:Configurationofaseven-layerdampingstructureshow- where ingtheDOF. 1 [M]𝑒 =∫ 𝑚 𝑙[N ]𝑇[N ]𝑑𝜉, [N ]=[N ][T ]. cons,2 2 f1 f1 f1 f I 0 (9) Basedontheaboveequationsanddesignparametersof eachlayer,theelementmass/stiffness/dampingmatrixofthe 2.3. FEM Modeling of a Seven-Layer Constrained Damping seven-layer sandwich damping beam can be expressed as Beam. Theseven-layersandwichbeamconsistsofsevenal- follows: ternatinglayers—fourelasticlayersandthreedampinglayers. Figure3 shows the FEM model of a seven-layer sandwich [K ]𝑒 = T𝑇[K ]T +T𝑇[K ]T e 1 e1 1 3 e3 3 beamcontaining2nodesand10DOF,andthenodedisplace- mentvectorisasfollows: +T𝑇[K ]T +T𝑇[K ]T , 5 e5 5 7 e7 7 {𝛿}𝑒7layer =(⏟⏟⏟⏟𝑤⏟⏟⏟𝑖⏟⏟⏟⏟𝜃⏟⏟𝑖⏟⏟⏟⏟𝑢⏟⏟1⏟𝑖⏟⏟⏟⏟𝑢⏟⏟3⏟𝑖⏟⏟⏟⏟𝑢⏟⏟5⏟⏟𝑖⏟⏟⏟𝑢⏟⏟7⏟⏟𝑖⏟⏟⏟⏟|⏟𝑤⏟⏟⏟⏟𝑗⏟⏟⏟𝜃⏟⏟𝑗⏟⏟⏟⏟𝑢⏟⏟1⏟⏟𝑗⏟⏟⏟⏟𝑢⏟⏟3⏟𝑗⏟⏟⏟⏟𝑢⏟⏟5⏟⏟𝑗⏟⏟⏟⏟𝑢⏟⏟7⏟𝑗⏟⏟⏟)⏟⏟⏟𝑇⏟. [K ]𝑒 =T𝑇[K ]T +T𝑇[K ]T +T𝑇[K ]T , (14) 12×1 v 2 v2 2 4 v4 4 6 v6 6 (10) 7 Thetransfermatrixtoobtaintheelementstiffnessandthe [M ]𝑒 =∑T𝑇[M ]T. e i ei i massmatrixwhenthe1st,3rd,5th,and7thlayersareelastic 𝑖=1 arefollows: Thus, the element matrices can be assembled to obtain [T1]=(⏟⏟e⏟⏟1⏟⏟⏟⏟⏟e⏟⏟2⏟⏟⏟⏟⏟e⏟⏟3⏟⏟⏟⏟e⏟7⏟⏟⏟⏟⏟e⏟⏟⏟8⏟⏟⏟⏟e⏟⏟⏟9⏟⏟)⏟⏟𝑇⏟, theglobalmass/stiffness/dampingmatrixandcanbeapplied 6×12 to the boundary condition through the conventional FEM technique. Taking into the consideration of the viscoelastic [T3]=⏟(⏟e⏟⏟1⏟⏟⏟⏟⏟e⏟⏟2⏟⏟⏟⏟⏟e⏟⏟4⏟⏟⏟⏟⏟e⏟7⏟⏟⏟⏟⏟e⏟⏟8⏟⏟⏟⏟⏟e⏟⏟1⏟⏟0⏟)⏟⏟⏟𝑇⏟, dampingproperties,theglobalmatricesneedtobemanipu- 6×12 latedasaportionoftheBiotdynamicequation. (11) [T5]=⏟(⏟e⏟⏟1⏟⏟⏟⏟⏟e⏟⏟2⏟⏟⏟⏟⏟e⏟⏟5⏟⏟⏟⏟⏟e⏟7⏟⏟⏟⏟⏟e⏟⏟8⏟⏟⏟⏟⏟e⏟⏟1⏟⏟1⏟)⏟⏟⏟𝑇⏟, 2.4.IntroductionoftheBiotDynamicEquation. Toconsider 6×12 the vibration problem numerically, the dynamic equation [T7]=⏟(⏟e⏟⏟1⏟⏟⏟⏟⏟e⏟⏟2⏟⏟⏟⏟⏟e⏟⏟6⏟⏟⏟⏟⏟e⏟7⏟⏟⏟⏟⏟e⏟⏟8⏟⏟⏟⏟⏟e⏟⏟1⏟⏟2⏟)⏟⏟⏟𝑇⏟. discretized by FEM technique needs to be expressed by the followingsecond-orderordinarydifferentialequation(ODE) 6×12 form: Similarly, the element stiffness and the mass matrix for the2nd,4th,and6thlayersoftheconstraineddampinglayer Mẍ+Cẋ+Kx=f(t). (15) canbederivedthroughthetransfermatrix: The Biot viscoelastic damping model numerically rep- [T2]=(⏟⏟e⏟⏟1⏟⏟⏟⏟⏟e⏟⏟2⏟⏟⏟⏟⏟e⏟⏟3⏟⏟⏟⏟⏟e⏟⏟4⏟⏟⏟⏟⏟e⏟7⏟⏟⏟⏟⏟e⏟⏟8⏟⏟⏟⏟⏟e⏟⏟9⏟⏟⏟⏟⏟e⏟⏟1⏟⏟0⏟⏟)⏟⏟𝑇⏟, resents the complex shear modulus with a series of mini- oscillatorperturbingterms: 8×12 [T4]=(⏟⏟e⏟⏟1⏟⏟⏟⏟⏟e⏟⏟2⏟⏟⏟⏟⏟e⏟⏟4⏟⏟⏟⏟⏟e⏟⏟5⏟⏟⏟⏟⏟⏟e7⏟⏟⏟⏟⏟e⏟⏟8⏟⏟⏟⏟⏟e⏟⏟1⏟⏟0⏟⏟⏟⏟⏟e⏟⏟1⏟1⏟⏟)⏟⏟⏟𝑇⏟, (12) 𝑠𝐺̃(𝑠)=𝐺∞[1+∑𝑚𝑎𝑘𝑠+𝑠𝑏 ], (16) 8×12 𝑘=1 𝑘 [T6]=(⏟⏟e⏟⏟1⏟⏟⏟⏟⏟e⏟⏟2⏟⏟⏟⏟⏟e⏟⏟5⏟⏟⏟⏟⏟e⏟⏟6⏟⏟⏟⏟⏟⏟e7⏟⏟⏟⏟⏟e⏟⏟8⏟⏟⏟⏟⏟e⏟⏟1⏟⏟1⏟⏟⏟⏟⏟e⏟⏟1⏟2⏟⏟)⏟⏟⏟𝑇⏟, in which 𝐺∞ is the long-term shear moduli; 𝑎𝑘 and 𝑏𝑘 are 8×12 the Biot constants. These parameters are positive and can be determined by nonlinear curve fitting from the experi- wherethenotationeimeans mentaldata.Thecurve-fittingprocedurewillbediscussedin 0 0 ⋅⋅⋅ ⋅⋅⋅ ⏟⏟⏟⏟1⏟⏟⏟ ⋅⋅⋅ ⋅⋅⋅ 0 𝑇 Section3. e =( ) . i ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝑖⏟t⏟h⏟⏟p⏟l⏟a⏟⏟c⏟e⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ (13) Substituting the Biot damping model into (15), the dynamic equation with 𝑚 terms of the Biot parameters for 12×1 ISRNMechanicalEngineering 5 the first viscoelastic material and 𝑛 terms for the second Table1:TheBiotconstantsof3MISD-110/11245∘C. viscoelasticmaterialcanbedevelopedasfollows: ISD110 ISD112 𝐺∞Λ =Λ , 𝐺∞Λ =Λ , 𝐺∞ 55000(Pa) 172000(Pa) 1 v1 1 2 v2 2 (17) a1 1.809517 5.699386303 R =𝐺∞R Λ , R =𝐺∞R Λ , 1 1 v1 v1 2 2 v2 v2 a2 14.53095 0.596843249 where Rv and Λv are the eigenvector and diagonal eigen- a3 3.221535 1.000560485 value matrices, respectively, from the damping matrix C. a4 52.01026 0.577694736 Additionally,𝑎11⋅⋅⋅𝑎1𝑚,𝑏11⋅⋅⋅𝑏1𝑚,and𝑧11⋅⋅⋅𝑧1𝑚 denote𝑚 a5 19768.22 termsoftheBiotparametersandthedissipativecoordinates, a6 6.561162 respectively,forfirstviscoelasticmaterial. b1 5.410993 4268.18097 Similarly, 𝑎21⋅⋅⋅𝑎2𝑛, 𝑏21⋅⋅⋅𝑏2𝑛, and 𝑧21⋅⋅⋅𝑧2𝑛 denote 𝑛 b2 1093.778 70.26089968 termsoftheBiotparametersandthedissipationcoordinates, b3 60.36544 501.5607814 respectively, for second viscoelastic material. A detailed b4 4319.613 1.969150769 derivationcanbefoundinthepreviouspublication[28]. b5 2840958 b6 298.0672 3.ParametricDeterminationoftheBiot DampingModel theprecisionofthisapproximation.Thecurvefittingofthe experimental data is accomplished using the commercial A curve-fitting technique is used to provide the accurate software package Auto2fit on the real and imaginary parts Biotconstantstothedynamicequationandtoestablishthe simultaneously. Using the Biot terms equal to six and four dynamiccharacteristicsoftheviscoelasticmaterials.Inthis withrespecttotwocommercialdampingmaterials3MISD- section, the nonlinear curve-fitting procedure for the com- 110and112,respectively,theresultsareshowninTable1for plexshearmodulusinthefrequencydomainisconvertedinto ambienttemperature(𝑇)equalto45∘Candfrequencyrange anonlinearconstrainedoptimizationproblem. of500Hz. ThecomplexshearmoduluswiththeBiotdampingmodel Figures4(a)and4(b)showthecomparisonbetweenthe formcanbebrokenintorealandimaginarypartsseparately: Arrheniusdataandcurve-fittingdatafortherealandimag- inaryparts,respectively.Figure5showstherelativeerrorin 𝑁 𝑎𝜛2 𝑁 𝑎𝑏𝜛 𝑠𝐺̃(𝑗𝜔)=𝐺∞[1+∑ 𝑖 ]+𝑗𝐺∞[1+∑ 𝑖 𝑖 ]. thefittingrange. 𝑏2+𝜛2 𝑏2+𝜛2 𝑖=1 𝑖=1 As shown in Figures 4(a) and 4(b), the Biot parametric 𝑖 𝑖 (18) determinationtechniqueestimatesthedynamicpropertiesof ∘ 3MISD-110/112at45 Cwithalmostzeroerror.Theconstants The Biot parameters—𝐺∞, 𝑎𝑖, and 𝑏𝑖 —are estimated from determinedusingtheaboveprocedurealongwiththeFEM experimentaldatawiththecertainfittingfrequencyrange,on modelofsandwichbeamwillnowbeincorporatedtosolve realpartandimaginarypartsseparately.Generallyspeaking, the complete Biot dynamic equation using the decoupling one set of the Biot parameters needs to be determined for transformationtechnique. each ambient temperature independently. In (18), 𝑁 is the numberoftheBiotperturbingitems,definingthecapability 4.DecouplingTransformationand ofthisnumericalapproximation.AstheBiotterms(𝑁)are DynamicSolution increased, the relative error between the experimental data andthecurve-fittingresultreduces. In this section, the algorithm used to obtain the frequency Assuming𝑥1 =𝐺∞;𝑥2 =𝑎1;𝑥3 =𝑏1;𝑥4 =𝑎2;𝑥5 =𝑏2;... response function (FRF) will be discussed with respect to withtheconstraintcondition:𝑥𝑘 ≥ 0;𝑘 = 1,2,...,num,the thevibroacousticalproblemforamultiple-layerviscoelastic targetequationoftheoptimizationproblemisthefollowing: damping structure. In this research, the damping matrix D m𝑥in F(𝑥)= ∑𝑃 𝐺𝑗∗(𝑥)−𝐺0𝑗2. (19) imna(s1s5a)nddosetsiffnnoetsshmavaetriax.pThropuos,ratiodnecaolurpellaintigotnrsahnispfowrmithatitohne 𝑗=1 is needed to construct the first-order state equation by introducingtheauxiliaryequationMq̇−Mq̇ =0asfollows: sheaIrnmthoedutalurgseftroemqutahteioenxp(1e9r)im, 𝐺en0𝑗tasltadnatdaswfoitrht𝑃heinctoemrepstleedx Aẏ+By=̂f, (20) points(largerthanthenumberofunknowns).The3MISD- where 110/112viscoelasticpolymerisselectedinthissimulation.The experimental data is obtained by the Arrhenius empirical D M K 0 A=[ ], B=[ ], equationfrom[19].Withaspecificfittingrangeataparticular M 0 0 −M temperature,thecomplexshearmoduluscanbesynthesized (21) from one set of the Arrhenius coefficients. The number y={q}, ̂f ={f}. of terms (𝑁) in (18) needs to be determined to ensure q̇ 0 6 ISRNMechanicalEngineering ×106 ×106 2.5 3 The Arrhenius data The Arrhenius data Curve fit data Curve fit data 2 2.5 alpart 1.5 nary part 1.25 Re 1 gi ma 1 I 0.5 0.5 0 0 0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500 Frequency(Hz) Frequency(Hz) (a) (b) ∘ Figure4:(a)ComparisonbetweentheArrheniusandcurve-fittingdatafortherealpartoftheshearmodulus(3M-ISD-110,45C).(b) ∘ ComparisonbetweentheArrheniusandcurve-fittingdatafortheimaginarypartoftheshearmodulus(3M-ISD-110,45C). Here,𝑁isthenumberofDOFintheM,D,andKmatrices, 40 theDOFofAandBmatricesis2𝑁. 35 Firstly, the free vibration of (20) will be considered. 30 Assuminĝf =0,thefollowingformofsolutionisobtained: %) 25 ( or (A𝜆+By)Φ=0, (22a) err 20 ely 15 v or ati 10 el Ψ R 5 (A𝜆+By){Ψ𝜆}=0, (22b) 0 −5 where𝜆matrixstandsfor2𝑁complexconjugateeigenvalues 0 100 200 300 400 500 including the natural frequencies and loss factors informa- Frequency(Hz) tion: Error % in real part Error % in imag part 𝜆 1 [[[... 𝜆 ]]]=[[[[[ 𝜆∗1 ... 0 ]]]]]. (23) Figure5:RelativeerrorbetweenArrheniusandcurve-fittingdata. [ ...] [ 0 𝜆𝑁 ] [ 𝜆∗𝑁] space.ByleftmultiplyingofΦ𝑇withthesubstitutionof𝑦,we get: Itmustbenotedthatzeroitemswillappearintheeigen- valuematrixifthedampingmatrixDisnotfullyranked.The Φ𝑇AΦ𝑝̇ +Φ𝑇BΦ𝑝=Φ𝑇̂f. (25) modeshapevectorΨforthevectorqcanbeextractedfrom theeigenvectormatrixΦwithrespecttothevectory: Thediagonalmodalmassandstiffnessmatrixare: [Φ]={ [Ψ]1 [Ψ]∗1 ⋅⋅⋅ [Ψ]𝑁 [Ψ]∗𝑁 }. Φ𝑇AΦ=[[... M ]]; Φ𝑇BΦ=[[... K ]]. 𝜆 [Ψ] 𝜆∗[Ψ]∗ ⋅⋅⋅ 𝜆 [Ψ] 𝜆∗[Ψ]∗ [ p ] [ p ] 1 1 1 1 𝑁 𝑁 𝑁 𝑁 (24) [ ...] [ ...] (26) Inaddition,(22b)canbenumericallysolvedby𝜆{Ψ} = −[A]−1[B]{Ψ}usingmathematicalsoftwarepackagesuchas Then rewrite the equation with the diagonal mass and stiffnessmatrices MATLABorMathematica. dsuobmsStaeiitcnuotnwiodinllly,cbtaehnedbfioescrmcuesadsdevedi.bbrAyastasisousnmumsionilgnugt̂fio𝑦=n=o{fF0Φ(2}𝑝,0,)thcineontvhvaeerritatiimbnlgee [[[... Mp ]]]𝑝̇ +[[[... Kp ]]]𝑝=Φ𝑇̂f. (27) the state-space equation from the time space to the modal [ ...] [ ...] ISRNMechanicalEngineering 7 The FRF in the frequency domain can be easily deter- mined through the complex conjugate eigenvalue matrix𝜆, eigenvector matrix Φ, and the modal mass matrix Mp. The Γ𝑝 𝑉 Γ𝑍 modal scaling factor matrix can be calculated through the following: −1 [... ] [... ] [[ Q ]]=[[ Mp ]] . (28) [ ...] [ ...] Γ 𝑛 𝑣𝑛 Thus,FRFcanbeestablishedthroughthemodalparam- eters,beingexpressedinpartialfractionformintermsofthe residuevectorandsystempolesasfollows: Figure6:Notationsof2-DBEMinteriorprobleminafluiddomain 𝑉. X(𝑗𝜔) 𝑁 QΨΨT QΨ∗Ψ∗T [H(𝑗𝜔)]= =∑[ i i i + i i i ]. F(𝑗𝜔) (𝑗𝜔−𝜆) (𝑗𝜔−𝜆∗) 𝑖=1 𝑖 𝑖 (29) Here, 𝑘 is equal to 𝜔/𝑐, which means that the wave number is equal to the radiant frequency over the speed of Thesystemvelocitycannowbeobtainedfromtheabove equationbyasimpleFouriertransformation.Bydoingso,the sound;vn,𝜌0,zstandforthenormalvelocity,densityofthe fluid 𝑉 (normally the air), and acoustical impedance of the vibrationproblemcanbeextendedtoanFRF-basedacousti- fluid𝑉,respectively. calproblemandthecombinationofthesetwoanalysesisthe particlevelocitiesinformationcalculatedbythefollowing: In this work, the link between the vibration and the acoustics analysis is the normal velocity at the acoustical Ẋ (𝑗𝜔)=𝑗𝜔[H(𝑗𝜔)]F(𝑗𝜔) boundaries.Recallingthedynamicsolutionofthedecoupling transformation, the particle velocity in the time domain at 𝑁 QΨΨT QΨ∗Ψ∗T =𝑗𝜔[F(𝑗𝜔)]⋅∑[ i i i + i i i ]. eachnodecanbecalculatedthrough(30)ifthemultiple-layer (𝑗𝜔−𝜆) (𝑗𝜔−𝜆∗) sandwich beam is discretized by the FEM; alternatively the 𝑖=1 𝑖 𝑖 FRF,thecomplexratiobetweentheoutputandinputresponse (30) in the frequency domain, can be determined through (29). Once the input signal is given, the particle velocity of the 5.AcousticalBoundaryElementMethod system displacement versus frequency relationship can be (BEM)Analysis convenientlyobtainedthroughtheFRF. To solve the governing differential equation (31) in the 5.1.IntroductionofAcousticalBEMTheory. InSection4,the bounded fluid domain 𝑉, the Helmholtz Equation can be vibration problem of the multiple-layer sandwich beam is transformed into the integral equation, converting the 2-D solved through the time-domain dynamic ordinary differ- areaintegrationtothe1-Dcurveintegrationaroundthearea: ential equation of the Biot damping model with numerical analysis by the FEM technique. The vibration problem can 𝜕Ψ(𝜉,𝑥) 𝑐(𝜉)𝑝(𝜉)+∫ 𝑝(𝜉)𝑑Γ=−∫ 𝑖𝜌 𝜔Ψ(𝜉,𝑥)v (𝑥)𝑑Γ. be extended to the acoustical problem by the semicoupled 𝜕𝑛 0 n Γ Γ method:thevibrationwillinduceachangeinsoundpressure, (32) yet the sound pressure will not cause the vibration. In this in which 𝑐(𝜉): geometry-dependent coefficient, normally section, the acoustical interior problem will be numerically 𝑐(𝜉) = 0when𝜉isinthedomain𝑉and𝑐(𝜉) = 0.5when𝜉 solved by 2D boundary element method (BEM) technique [29]inaboundedfluiddomain𝑉asshowninFigure6. isonthesmoothboundaryΓ,𝑝(𝜉):soundpressureatsource Thesoundpressuredistribution(𝑝)ofthetime-harmonic point𝜉,Ψ(𝜉,𝑥):𝑥isthefieldpointandΨ = −(𝑖/4)H(02)(𝑘𝑟) wave in the domain 𝑉 satisfies the governing differential forthe2DBEMproblem𝑟theEuclidiandistancebetween𝑥 equation,wellknownastheHelmholtzequation,associated and𝜉,H(02) andtheSecond-typeHenkelfunction,𝑛:normal withtheboundaryconditionsonboundaryΓ(=Γ𝑝∪Γv ∪ΓZ) vectorpointingawaytothefluiddomain𝑉. n asfollows: Bydiscretizingtheboundaryintoaseriesofcurve-linear ∇2𝑝(𝑥)+𝑘2𝑝(𝑥)=0,when elementsthroughtheintroductionoftheshapefunctions,the integralequationcanbecalculatednumericallybysolvingthe 𝑝(𝑥)=𝑝 , 𝑥∈Γ followinglinearmatrix: 0 𝑝 v (𝑥)≡− 1 𝜕𝑝 =v , 𝑥∈Γ (31) HP=𝐺VN, (33) n 𝑗𝑤𝜌0𝜕𝑛 n0 vn whereHcomesfromthetermsof𝑐(𝜉)and∫ 𝑝(𝜉)(𝜕Ψ(𝜉,𝑥)/ Γ z(𝑥)≡ 𝑝 =z , 𝑥∈Γ . 𝜕𝑛)𝑑Γ, 𝐺 is derived from −∫Γ𝑖𝜌0𝜔vn(𝑥)Ψ(𝜉,𝑥)𝑑Γ, and the vn 0 Z vectorPandVNincludesoundpressureandparticlevelocity 8 ISRNMechanicalEngineering Table2:Designparametersofseven-layerstructure. Length:1m Thickness:0.1m Numberofelement:12 Numberofnodes:13 Numberoflayer Heightoflayer Elastic/viscoelasticproperties Materialdensity 1st ℎ1=1mm 𝐸1=210GPa 𝜌1=7800kg/m3 2nd ℎ2=0.8mm 𝐺2:Biot 𝜌2=970kg/m3 3rd ℎ3=1mm 𝐸3=210GPa 𝜌3=7800kg/m3 4th ℎ4=0.8mm 𝐺4:Biot 𝜌4=970kg/m3 5th ℎ5=1mm 𝐸5=210GPa 𝜌5=7800kg/m3 6th ℎ6=0.8mm 𝐺6:Biot 𝜌6=970kg/m3 7th ℎ7=1mm 𝐸7=210GPa 𝜌7=7800kg/m3 1 m Fieldpoint (0.5,0.4) m Figure8:Seven-layersandwichstructurewithviscoelasticcores. 0.6 Anechoic boundaries When the seven-layered sandwich beam (𝐿 = 1m) is simply supported at the bottom of the acoustical cavity, 𝐹(impulse force) the sound pressure level at the field point (𝑥 = 0.5m, 𝑦 = 0.4m)iscalculatedthroughthisproposedmethod,and Figure7:LayoutofBEMacousticalcavityproblem. the calculation results are presented in Section6. Figure7 demonstratesthedetailedlayoutofthis2Dacousticalcavity problem. The anechoic boundary condition is applied on values, both unknowns and known from the boundary the inside of the acoustical cavity, and the thickness of the condition. multiple-layeredbeamisneglected. Thus, each set of node velocities due to the force input results in one set of solutions on the sound pressure by 6.NumericalResultsandDiscussion BEMdiscussedinthissection.Insum,throughtheproposed acousticalBEM,itispossibletocomputethetime-harmonic 6.1.DesignParameterofSandwichBeamandVibrationAnal- sound pressure distribution corresponding to each single ysis Result. In Figure8, a seven-layer sandwich beam with frequencypointinthefrequencyspectrum. viscoelasticcoresisshown,withthedesignparameterslisted inTable2. The data presented in Table2 are used to predict the 5.2. Calculation Details in This BEM Analysis. For this par- vibration performance of the system using the numerical ticular acoustical BEM interior problem, the boundary of simulation method presented in this paper, and the results acousticalcavityisdiscretizedas18quadraticequallyspaced arecomparedwiththeclosed-formsolutionofHao[19].The boundary elements. The quadratic curvilinear element has curve-fittingresultsforthedampingmaterial3MISD-110at threenodes,andtheinterpolationbetweeneachnoderepre- ∘ 45 Cdiscussedearlierareselectedfortheshearmodulusof sentsthegeometryofeachelement.Theshapefunctionsare theviscoelasticlayersinthisexample.Theresultsareshown asfolows: in Table3. It shows that the simulation presented in this 1 𝑁 = 𝜉(𝜉−1), 𝑁 =(𝜉+1)(𝜉−1), paper conforms to the closed-form solution. This validates 1 2 2 theanalysismethodologyproposedinthepaper. (34) 1 𝑁 = 𝜉(𝜉+1), 3 2 6.2. Frequency-Spectrum Analysis under the Arbitrary Input. withrespecttothefollowingelementcoordinates: Figure9 shows the transverse velocity of the middle node (node number 7) with a 10N step input in the frequency 3 3 domainverticallyappliedatthemiddle(nodenumber7)of 𝑥=∑𝑥𝑖𝑁𝑖(𝜉), 𝑦=∑𝑦𝑖𝑁𝑖(𝜉), (35) the simply-supported seven-layer sandwich beam with the 𝑖=1 𝑖=1 same design parametersas the previousexample. The same where𝑥𝑖and𝑦𝑖arethecoordinatesateachnodalpoint,and𝜉 curve-fittingresultsof3MISD110attheambienttemperature standsforthelocalcoordinatebetween−1and1onamaster of45∘Cfortheshearmodulusareusedinthisexample.This element. pivotalresultisthedemonstrationofextendingthevibration ISRNMechanicalEngineering 9 Table 3: Comparison of results for simply supported boundary Table4:ComparisonofmodalresultswithANSYSsimulation. condition. FEMmodelofthis ANSYS3D Hao[19] FEMmodelof Numberof Damping research Number Damping thispaper mode model 3M-ISD110-45∘C ofmode model ISD110-45∘C ISD110-45∘C Nodamping 6-termBiot Arrhenius 6-termBiot Frequency 6.4803Hz 4.5834Hz 1st Frequency 4.7443Hz 4.5834Hz 1st Lossfactor 0.7916 Lossfactor 0.6248 0.7916 Frequency 14.338Hz 13.9489Hz 2nd 2nd Frequency 13.902Hz 13.9489Hz Lossfactor 0.6824 Lossfactor 0.6008 0.6824 Frequency 27.989Hz 27.7721Hz 3rd Frequency 27.661Hz 27.7721Hz Lossfactor 0.5632 3rd Lossfactor 0.5317 0.5632 Frequency 46.1548Hz 47.1053Hz 4th Lossfactor 0.4715 0.4681 6.4. Validation Using a BEM Commercial Software. In this Frequency 69.3118Hz 68.82259Hz section, a hybrid FEM-BEM model of a beam without the 5th Lossfactor 0.421 0.4226 viscoelastic damping was developed using the commercial software packages ANSYS ADPL and LMS Virtual. Lab Acoustics. The harmonic vibration analysis is conducted in ×10−5 ANSYSAPDLmodule,andthefrequencyspectrumoffield Transverse velocity on driving point-node number 7 7 point SPL was calculated in Virtual.Lab Acoustics module forcomparisonwiththeSPLfrequencyspectrumpresented 6 inSection5.Theanalysissequenceconsistsofthefollowing steps. 5 (a)BuildtheFEMmodelandapplyappropriatebound- 4 aryconditionsinANSYSADPL.The8-nodeelement m/s) SOLID45 (element size =10mm for each layer) was ( 3 used to build the 3D seven-layer model. The design parametersareidenticalwiththeparametersinTables 2 1and2forthecomparisonandthegeometrybound- 1 aryconditionsaresimplysupported.A10Nforceat eachfrequencyisappliedatthemiddlenodes. 0 0 50 100 150 200 250 300 (b)Conduct the harmonic vibration analysis in ANSYS ADPL.Theharmonicanalysisisusedtocalculatethe Frequency (Hz) nodal displacements for a forced vibration problem Figure 9: Transverse velocity under the impulse excitation (on inthefrequencydomain.Thefrequencyrangeis0– middlenode#7). 200Hzwitha2Hzforstepsize,andthefullmethod is being utilized in this analysis. The comparison of system frequencies between ANSYS modal results andcalculationresultsbytheBiotdynamicequation totheacousticalprobleminthefrequencydomainwhenan is shown in Table4. The results show that the 3D arbitraryforceisappliedonthestructure. model built in ANSYS APDL has good correlation withtheFEMmodel. 6.3.AcousticalBEMResults. Figure10illustratesthecontour (c)Prepare the BEM mesh in LMS Virtual. Lab Pre- plot(𝑓=10Hz)ofSPLwhentheseven-layersandwichbeam Acoustics module. It converts from a solid FEM (usingthesamedesignparametersasbefore)issubjectedtoa modeltoaskinmeshthattheBEManalysisrequires. 10Nstepinputinthefrequencydomainatthemiddlenode. The BEM mesh, can be seen as a wrap around the The interpolation of each elements result in Figures 10 structuralmeshandusuallytheBEMmeshiscoarser. and11showsthecontinuoussoundpressuredistributionin the acoustical cavity with an anechoic boundary condition. (d)Calculate the sound pressure in LMS Virtual.lab Figure12extractsthefrequencyspectrumofSPLatthefiled Acoustics module. Both acoustical and structural point (0.5, 0.4m) indicated by red dot in Figure10. From meshes are imported to VL Acoustics. The nodal the results of Figure12, it can be found that the dominant displacement at each vibration mode calculated in contribution is due to the peak value of the first flexible ANSYSAPDLisalsoimportedandmesh-mappedto vibration mode, which is in agreement with the frequency- the acoustical skin mesh as the vibration boundary spectrumanalysisofthevibrationproblem. condition.Thelocationoffieldplaneandfieldpointis 10 ISRNMechanicalEngineering SPLcontourplotwithanechoicBC-10 Hz 0.6 44.68 44.67 0.5 44.66 44.65 0.4 m) 44.64 al( 0.3 44.63 c Verti 44.62 0.2 44.61 44.6 0.1 44.59 44.58 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Horizontal (m) Figure10:ContourPlotofSoundPressureLevel(indB)whentheimpulseforceappliedis𝑁. SPLplotwithanechoicBC-10Hz 0.6 44.68 44.67 0.5 44.66 44.65 0.4 m) 44.64 ( al 0.3 44.63 c Verti 44.62 0.2 44.61 44.6 0.1 44.59 44.58 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Horizontal(m) Figure11:ElementresultofSoundPressureLevelindB(10Hz). consistentwiththe2DBEManalysisinthisresearch. of viscoelastic damping material in a mechanical system. The acoustical pressure is solved over the frequency Withanincreaseintemperature,thelossfactorapproaches rangefrom2to200Hz. itsbestperformancetowardsthetransitionregionandthen decreasesafterwards.Inthisexample,theobjectiveistostudy AsshowninFigure13,thepeakfrequencyfromthe2-D the effects of both 3M ISD110 material (that has a better BEMcalculationmatcheswiththefirstdominantSPLpeak dampingperformance)andthe3MISD112overthechosen obtainedfromtheVLAcousticresultwithoutthedamping. temperaturebetween40and60degreeCelsius.Itisofinterest Comparing the two results, it is clear that the introduction tostudytheeffectofthecombinationofthesetwomaterials of viscoelastic damping not only causes almost a 20dB onthedampingofthestructure. reductioninthefirstpeakSPLbutalsoattenuatesthesound To introduce the different viscoelastic materials, the atotherpeaksaswell.Thisprovesthattheuseofviscoelastic seven-layer sandwich beam (with the same parameters as damping material will greatly attenuate the vibroacoustical in the previous example) is redesigned incorporating both responseofthestructure. damping materials (3M ISD110 and ISD112). This system is compared to an identical structure with only one damping 6.5. Acoustical Performance for a Combination of Several material(either3MISD110orISD112).Inthesysteminclud- ViscoelasticMaterialsatDifferentTemperatures. Thetemper- ingtwoviscoelasticmaterials,theouterdampinglayers(2nd atureisasignificantexternalfactoraffectingtheperformance and 6th) are 3M ISD112 and the inner damping layer (5th)
Description: