ebook img

Vector Algebra I: Scalars and Vectors PDF

595 Pages·2012·3.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vector Algebra I: Scalars and Vectors

· · Klaus Weltner Wolfgang J. Weber Jean Grosjean Peter Schuster Mathematics for Physicists and Engineers Fundamentals and Interactive Study Guide 1 3 Prof.Dr.KlausWeltner WolfgangJ.Weber UniversityofFrankfurt UniversityofFrankfurt InstituteforDidacticofPhysics ComputingCenter Max-von-Laue-Straße1 Grüneburgplatz1 60438Frankfurt/Main 60323Frankfurt Germany Germany [email protected] [email protected] Dr.PeterSchuster Prof.Dr.JeanGrosjean AmHolzweg30 SchoolofEngineering 65843Sulzbach attheUniversityofBath Germany England ThistitlewasoriginallypublishedbyStanleyThornes(Publisher)Ltd,1986,entitled‘Mathematicsfor EngineersandScientists’byK.Weltner,J.Grosjean,F.SchusterandW.J.Weber. CartoonsinthestudyguidebyMartinWeltner. ISBN 978-3-642-00172-7 e-ISBN 978-3-642-00173-4 DOI 10.1007/978-3-642-00173-4 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009928636 ©Springer-VerlagBerlinHeidelberg2009 Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violations areliabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneral descriptive names, registered names, trademarks, etc. inthis publication does not imply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotective lawsandregulationsandthereforefreeforgeneraluse. Thepublisherandtheauthorsacceptnolegalresponsibilityforanydamagecausedbyimproperuseof theinstructionsandprogramscontainedinthisbookandtheCD.Althoughthesoftwarehasbeentested withextremecare,errorsinthesoftwarecannotbeexcluded. TypesettingandProduction:le-texpublishingservicesGmbH,Leipzig,Germany Coverdesign:eStudioCalamarS.L.,Spain/Germany Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Main Authors of the International Version Prof. Dr. Klaus Weltner has studied physicsat the TechnicalUniversityHannover (Germany)andtheUniversityofBristol(England).Hegraduatedinplasmaphysics andwasprofessorofphysicsanddidacticofphysicsattheuniversitiesOsnabrück, Berlin,FrankfurtandvisitingprofessorofphysicsattheFederalUniversityofBahia (Brazil). Prof.Dr.JeanGrosjeanwasHeadofAppliedMechanicsattheSchoolofEngineer- ingattheUniversityofBath(England). Wolfgang J. Weber has studied mathematics at the universities of Frankfurt(Ger- many), Oxford (England) and Michigan State (USA). He is currently responsible forthetrainingofcomputerspecialistsatthecomputingcenterattheUniversityof Frankfurt. Dr.-Ing.PeterSchusterwaslecturerattheSchoolofEngineeringattheUniversity ofBath(England).Differentappointmentsinthechemicalindustry. v Preface Mathematicsis an essential tool for physicistsand engineerswhich students must usefromtheverybeginningoftheirstudies.Thiscombinationoftextbookandstudy guideaimstodevelopasrapidlyaspossiblethestudents’abilitytounderstandand tousethosepartsofmathematicswhichtheywillmostfrequentlyencounter.Thus functions,vectors,calculus,differentialequationsandfunctionsofseveralvariables are presented in a very accessible way. Further chapters in the book provide the basicknowledgeonvariousimportanttopicsinappliedmathematics. Basedontheirextensiveexperienceaslecturers,eachoftheauthorshasacquired acloseawarenessoftheneedsoffirst-andsecond-yearsstudents.Oneoftheiraims hasbeentohelpuserstotacklesuccessfullythedifficultieswithmathematicswhich are commonly met. A special feature which extends the supportive value of the maintextbookistheaccompanying“studyguide”.Thisstudyguideaimstosatisfy twoobjectivessimultaneously:itenablesstudentstomakemoreeffectiveuseofthe maintextbook,anditoffersadviceandtrainingontheimprovementoftechniques onthestudyoftextbooksgenerally. Thestudyguidedividesthewholelearningtaskintosmallunitswhichthestu- dentisverylikelytomastersuccessfully.Thusheorsheisaskedtoreadandstudy alimitedsectionofthetextbookandtoreturntothestudyguideafterwards.Learn- ingresultsarecontrolled,monitoredanddeepenedbygradedquestions,exercises, repetitionsandfinallybyproblemsandapplicationsofthecontentstudied.Sincethe degreeofdifficultiesisslowlyrisingthestudentsgainconfidenceimmediatelyand experiencetheir own progressin mathematicalcompetencethus fosteringmotiva- tion.Incaseoflearningdifficultiesheorsheisgivenadditionalexplanationsandin caseofindividualneedssupplementaryexercisesandapplications.Sothesequence of the studiesis individualisedaccordingto the individualperformanceand needs andcanberegardedasafulltutorialcourse. TheworkwasoriginallypublishedinGermanyunderthetitle“Mathematikfür Physiker” (Mathematics for physicists). It has proved its worth in years of actual use. This new international version has been modified and extended to meet the needsofstudentsinphysicsandengineering. vii viii Preface TheCDofferstwoversions.Inafirstversiontheframesofthestudyguideare presentedonaPCscreen.Inthiscasetheuserfollowstheinstructionsgivenonthe screen,atfirststudyingsectionsofthetextbookoffthePC.Afterthisautonomous studyheistoanswerquestionsandtosolveproblemspresentedbythePC.Asecond versionisgivenaspdffilesforstudentspreferringtoworkwithaprintversion. Both the textbook and the study guide have resulted from teamwork. The au- thors of the original textbook and study guides were Prof. Dr. Weltner, Prof. Dr. P.-B. Heinrich, Prof. Dr. H. Wiesner, P. Engelhard and Prof. Dr. H. Schmidt. Thetranslationandtheadaptionwasundertakenbytheundersigned. Frankfurt,August2009 K.Weltner J.Grosjean P.Schuster W.J.Weber Acknowledgement OriginallypublishedintheFederalRepublicofGermanyunderthetitle MathematikfürPhysiker bytheauthors K.Weltner,H.Wiesner,P.-B.Heinrich,P.EngelhardtandH.Schmidt. TheworkhasbeentranslatedbyJ.GrosjeanandP.Schusterandadaptedtotheneeds of engineeringand science studentsin English speakingcountriesby J. Grosjean, P.Schuster,W.J.WeberandK.Weltner. ix Contents Preface............................................................ vii 1 VectorAlgebraI:ScalarsandVectors ............................ 1 1.1 ScalarsandVectors ........................................ 1 1.2 AdditionofVectors ........................................ 4 1.2.1 SumofTwoVectors:GeometricalAddition ............. 4 1.3 SubtractionofVectors...................................... 6 1.4 ComponentsandProjectionofaVector ....................... 7 1.5 ComponentRepresentationinCoordinateSystems.............. 9 1.5.1 PositionVector ..................................... 9 1.5.2 UnitVectors........................................ 10 1.5.3 ComponentRepresentationofaVector ................. 11 1.5.4 RepresentationoftheSumofTwoVectors inTermsofTheirComponents ........................ 12 1.5.5 SubtractionofVectorsinTermsoftheirComponents ..... 13 1.6 MultiplicationofaVectorbyaScalar......................... 14 1.7 MagnitudeofaVector...................................... 15 2 VectorAlgebraII:ScalarandVectorProducts .................... 23 2.1 ScalarProduct ............................................ 23 2.1.1 Application:EquationofaLineandaPlane ............. 26 2.1.2 SpecialCases ...................................... 26 2.1.3 CommutativeandDistributiveLaws.................... 27 2.1.4 ScalarProductinTermsoftheComponentsoftheVectors. 27 2.2 VectorProduct ............................................ 30 2.2.1 Torque ............................................ 30 2.2.2 TorqueasaVector .................................. 31 2.2.3 DefinitionoftheVectorProduct ....................... 32 2.2.4 SpecialCases ...................................... 33 2.2.5 Anti-CommutativeLawforVectorProducts ............. 33 2.2.6 ComponentsoftheVectorProduct..................... 34 xi xii Contents 3 Functions ..................................................... 39 3.1 TheMathematicalConceptofFunctions anditsMeaninginPhysicsandEngineering ................... 39 3.1.1 Introduction........................................ 39 3.1.2 TheConceptofaFunction ........................... 40 3.2 GraphicalRepresentationofFunctions........................ 42 3.2.1 CoordinateSystem,PositionVector .................... 42 3.2.2 TheLinearFunction:TheStraightLine................. 43 3.2.3 GraphPlotting...................................... 44 3.3 QuadraticEquations ....................................... 47 3.4 ParametricChangesofFunctionsandTheirGraphs ............. 49 3.5 InverseFunctions.......................................... 50 3.6 TrigonometricorCircularFunctions.......................... 52 3.6.1 UnitCircle......................................... 52 3.6.2 SineFunction ...................................... 53 3.6.3 CosineFunction .................................... 58 3.6.4 RelationshipsBetweentheSineandCosineFunctions .... 59 3.6.5 TangentandCotangent............................... 61 3.6.6 AdditionFormulae .................................. 62 3.7 InverseTrigonometricFunctions ............................. 64 3.8 FunctionofaFunction(Composition) ........................ 66 4 Exponential,LogarithmicandHyperbolicFunctions............... 69 4.1 Powers,ExponentialFunction ............................... 69 4.1.1 Powers ............................................ 69 4.1.2 LawsofIndicesorExponents......................... 70 4.1.3 BinomialTheorem .................................. 71 4.1.4 ExponentialFunction................................ 71 4.2 Logarithm,LogarithmicFunction ............................ 74 4.2.1 Logarithm ......................................... 74 4.2.2 OperationswithLogarithms .......................... 76 4.2.3 LogarithmicFunctions............................... 77 4.3 HyperbolicFunctionsandInverseHyperbolicFunctions ......... 78 4.3.1 HyperbolicFunctions................................ 78 4.3.2 InverseHyperbolicFunctions ......................... 81 5 DifferentialCalculus ........................................... 85 5.1 SequencesandLimits ...................................... 85 5.1.1 TheConceptofSequence ............................ 85 5.1.2 LimitofaSequence ................................. 86 5.1.3 LimitofaFunction.................................. 89 5.1.4 ExamplesforthePracticalDeterminationofLimits....... 89 5.2 Continuity................................................ 91 Contents xiii 5.3 Series ................................................... 92 5.3.1 GeometricSeries.................................... 93 5.4 DifferentiationofaFunction ................................ 94 5.4.1 GradientorSlopeofaLine ........................... 94 5.4.2 GradientofanArbitraryCurve........................ 95 5.4.3 DerivativeofaFunction.............................. 97 5.4.4 PhysicalApplication:Velocity ........................ 98 5.4.5 TheDifferential..................................... 99 5.5 CalculatingDifferentialCoefficients..........................100 5.5.1 DerivativesofPowerFunctions;ConstantFactors ........101 5.5.2 RulesforDifferentiation .............................102 5.5.3 DifferentiationofFundamentalFunctions...............106 5.6 HigherDerivatives.........................................112 5.7 ExtremeValuesandPointsofInflexion;CurveSketching ........113 5.7.1 MaximumandMinimumValuesofaFunction...........113 5.7.2 FurtherRemarksonPointsofInflexion(Contraflexure) ...117 5.7.3 CurveSketching ....................................118 5.8 ApplicationsofDifferentialCalculus .........................121 5.8.1 ExtremeValues.....................................121 5.8.2 Increments.........................................122 5.8.3 Curvature..........................................123 5.8.4 DeterminationofLimitsbyDifferentiation: L’Hôpital’sRule ....................................125 5.9 FurtherMethodsforCalculatingDifferentialCoefficients ........127 5.9.1 ImplicitFunctionsandtheirDerivatives.................127 5.9.2 LogarithmicDifferentiation...........................128 5.10 ParametricFunctionsandtheirDerivatives.....................129 5.10.1 ParametricFormofanEquation .......................129 5.10.2 DerivativesofParametricFunctions....................133 6 IntegralCalculus...............................................145 6.1 ThePrimitiveFunction .....................................145 6.1.1 FundamentalProblemofIntegralCalculus ..............145 6.2 TheAreaProblem:TheDefiniteIntegral ......................147 6.3 FundamentalTheorem oftheDifferentialandIntegralCalculus.......................149 6.4 TheDefiniteIntegral.......................................153 6.4.1 CalculationofDefiniteIntegralsfromIndefiniteIntegrals..153 6.4.2 ExamplesofDefiniteIntegrals ........................156 6.5 MethodsofIntegration .....................................159 6.5.1 PrincipleofVerification..............................159 6.5.2 StandardIntegrals...................................159

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.