ebook img

Vavilov-Cherenkov and Synchrotron Radiation: Foundations and Applications PDF

506 Pages·2004·5.436 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Vavilov-Cherenkov and Synchrotron Radiation: Foundations and Applications

Vavilov-Cherenkov and Synchrotron Radiation Fundamental Theories of Physics An International Book Series on The Fundamental Theories of Physics: Their Clarification, Development and Application Editor: ALWYN VAN DER MERWE, University of Denver, U.S.A. Editorial Advisory Board: GIANCARLO GHIRARDI, University of Trieste, Italy LAWRENCE P. HORWITZ, Tel-Aviv University, Israel BRIAN D. JOSEPHSON, University of Cambridge, U.K. CLIVE KILMISTER, University of London, U.K. PEKKA J. LAHTI, University of Turku, Finland ASHER PERES, Israel Institute of Technology, Israel EDUARD PRUGOVECKI, University of Toronto, Canada FRANCO SELLERI, Università di Bara, Italy TONY SUDBURY, University of York, U.K. HANS-JÜRGEN TREDER, Zentralinstitut für Astrophysik der Akademie der Wissenschaften, Germany Volume142 Vavilov-Cherenkov and Synchrotron Radiation Foundations and Applications by G.N. Afanasiev Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia KLUWER ACADEMIC PUBLISHERS NEW YORK,BOSTON, DORDRECHT, LONDON, MOSCOW eBookISBN: 1-4020-2411-8 Print ISBN: 1-4020-2410-X ©2005 Springer Science + Business Media, Inc. Print ©2004 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook maybe reproducedor transmitted inanyform or byanymeans,electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Springer's eBookstore at: http://ebooks.springerlink.com and the Springer Global Website Online at: http://www.springeronline.com CONTENTS PREFACE xi 1 INTRODUCTION 1 2 THETAMMPROBLEMINTHEVAVILOV-CHERENKOV RADIATION THEORY 15 2.1 Vavilov-Cherenkov radiation in a finite region of space . . . 15 2.1.1 Mathematical preliminaries . . . . . . . . . . . . . . 15 2.1.2 Particular cases. . . . . . . . . . . . . . . . . . . . . 16 2.1.3 Original Tamm problem . . . . . . . . . . . . . . . . 32 2.1.4 Comparison of the Tamm and exact solutions . . . . 36 2.1.5 Spatial distribution of shock waves . . . . . . . . . . 38 2.1.6 Time evolution of the electromagnetic field on the surface of a sphere . . . . . . . . . . . . . . . . . . . 41 2.1.7 Comparison with the Tamm vector potential . . . . 46 2.2 Spatial distribution of Fourier components . . . . . . . . . . 51 2.2.1 Quasi-classical approximation . . . . . . . . . . . . . 51 2.2.2 Numerical calculations . . . . . . . . . . . . . . . . . 53 2.3 Quantum analysis of the Tamm formula . . . . . . . . . . . 58 2.4 Back to the original Tamm problem . . . . . . . . . . . . . 63 2.4.1 Exact solution . . . . . . . . . . . . . . . . . . . . . 64 2.4.2 Restoring vector potential in the spectral represen- tation . . . . . . . . . . . . . . . . . . . . . . . . . . 70 2.4.3 The Tamm approximate solution . . . . . . . . . . . 74 2.4.4 Concrete example showing that the CSW is not al- ways reduced to the interference of BS shock waves 77 2.5 Schwinger’s approach to the Tamm problem . . . . . . . . . 78 2.5.1 Instantaneous power frequency spectrum . . . . . . 80 2.5.2 Instantaneous angular-frequency distribution of the power spectrum . . . . . . . . . . . . . . . . . . . . . 84 2.5.3 Angular-frequency distribution of the radiated en- ergy for a finite time interval . . . . . . . . . . . . . 84 2.5.4 Frequency distribution of the radiated energy . . . . 86 2.6 The Tamm problem in the spherical basis . . . . . . . . . . 93 v vi CONTENTS 2.6.1 ExpansionoftheTammproblemintermsoftheLeg- endre polynomials . . . . . . . . . . . . . . . . . . . 93 2.7 Short r´esum´e of this chapter . . . . . . . . . . . . . . . . . . 97 3 NON-UNIFORMCHARGEMOTIONINADISPERSION- FREE MEDIUM 99 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 3.2 Statement of the physical problem . . . . . . . . . . . . . . 100 3.2.1 Simplest accelerated and decelerated motions [9] . . 101 3.2.2 Completely relativistic accelerated and decelerated motions [11] . . . . . . . . . . . . . . . . . . . . . . . 107 3.3 Smooth Tamm problem in the time representation . . . . . 115 3.3.1 Moving singularities of electromagnetic field . . . . . 115 3.4 Concluding remarks for this chapter . . . . . . . . . . . . . 124 chapter4 CHERENKOV RADIATION IN A DISPERSIVE MEDIUM127 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.2 Mathematical preliminaries . . . . . . . . . . . . . . . . . . 129 4.3 Electromagnetic potentials and field strengths . . . . . . . . 131 4.4 Time-dependent polarization of the medium . . . . . . . . . 141 4.4.1 Another choice of polarization . . . . . . . . . . . . 144 4.5 On the Kro¨nig-Kramers dispersion relations . . . . . . . . . 148 4.6 The energy flux and the number of photons . . . . . . . . . 149 4.7 WKB estimates . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.7.1 Charge velocity exceeds the critical velocity . . . . 158 4.7.2 Charge velocity is smaller than the critical velocity 160 4.8 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . 162 4.8.1 Estimation of non-radiation terms . . . . . . . . . . 164 4.9 The influence of the imaginary part of (cid:1) . . . . . . . . . . . 167 4.10 Application to concrete substances . . . . . . . . . . . . . . 175 4.10.1 Dielectric permittivity (4.7) . . . . . . . . . . . . . . 179 4.10.2 Dielectric permittivity (4.45) . . . . . . . . . . . . . 185 4.11 Cherenkov radiation without use of the spectral representation188 4.11.1 Particular cases . . . . . . . . . . . . . . . . . . . . . 191 4.11.2 Numerical Results. . . . . . . . . . . . . . . . . . . . 196 4.12 Short r´esum´e of this Chapter . . . . . . . . . . . . . . . . . 204 5 INFLUENCEOFFINITEOBSERVATIONALDISTANCES AND CHARGE DECELERATION 209 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 5.2 Finite observational distances and small acceleration . . . . 210 5.2.1 The original Tamm approach . . . . . . . . . . . . . 210 CONTENTS vii 5.2.2 Exact electromagnetic field strengths and angular- frequency distribution of the radiated energy . . . . 213 5.2.3 Approximations. . . . . . . . . . . . . . . . . . . . . 214 5.2.4 Decelerated charge motion . . . . . . . . . . . . . . . 216 5.2.5 Numerical results . . . . . . . . . . . . . . . . . . . . 219 5.3 Motion in a finite spatial interval with arbitrary acceleration 233 5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 233 5.3.2 Main mathematical formulae . . . . . . . . . . . . . 235 5.3.3 Particular cases . . . . . . . . . . . . . . . . . . . . . 238 5.3.4 Analytic estimates . . . . . . . . . . . . . . . . . . . 257 5.3.5 The absolutely continuous charge motion. . . . . . . 261 5.3.6 Superposition of uniform and accelerated motions . 272 5.3.7 Short discussion of the smoothed Tamm problem . 275 5.3.8 Historical remarks on the VC radiation and bremsstrahlung . . . . . . . . . . . . . . . . . . . . . 277 5.4 Short r´esum´e of Chapter 5 . . . . . . . . . . . . . . . . . . . 279 6 RADIATION OF ELECTRIC, MAGNETIC AND TOROIDAL DIPOLES MOVING IN A MEDIUM 283 6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 283 6.2 Mathematical preliminaries: equivalent sources of the elec- tromagnetic field . . . . . . . . . . . . . . . . . . . . . . . . 285 6.2.1 A pedagogical example: circular current. . . . . . . . 285 6.2.2 The elementary toroidal solenoid. . . . . . . . . . . . 287 6.3 Electromagnetic field of electric, magnetic, and toroidal dipoles in time representation. . . . . . . . . . . . . 293 6.3.1 Electromagnetic field of a moving point-like current loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 6.3.2 Electromagnetic field of a moving point-like toroidal solenoid . . . . . . . . . . . . . . . . . . . . 300 6.3.3 Electromagnetic field of a moving point-like electric dipole . . . . . . . . . . . . . . . . . . . . . . . . . . 307 6.3.4 Electromagnetic field of induced dipole moments . . 310 6.4 Electromagnetic field of electric, magnetic, and toroidal dipoles in the spectral representation . . . . . 313 6.4.1 Unbounded motion of magnetic, toroidal, and electric dipoles in medium . . . . . . . . . . . . 313 6.4.2 The Tamm problem for electric charge, magnetic, electric, and toroidal dipoles. . . . . . . . . . . . . . 327 6.5 Electromagnetic field of a precessing magnetic dipole . . . . 334 6.6 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . 337 viii CONTENTS 7 QUESTIONS CONCERNING OBSERVATION OF THE VAVILOV-CHERENKOV RADIATION 341 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 341 7.2 Cherenkov radiation from a charge of finite dimensions . . . 344 7.2.1 Cherenkov radiation as the origin of the charge de- celeration . . . . . . . . . . . . . . . . . . . . . . . . 349 7.3 Cherenkov radiation in dispersive medium . . . . . . . . . . 350 7.4 Radiation of a charge moving in a cylindrical dielectric sample . . . . . . . . . . . . . . . . . . . . . . . . 355 7.4.1 Radial energy flux . . . . . . . . . . . . . . . . . . . 356 7.4.2 Energy flux along the motion axis . . . . . . . . . . 357 7.4.3 Optical interpretation . . . . . . . . . . . . . . . . . 358 7.5 Vavilov-Cherenkov and transition radiations for a spherical sample . . . . . . . . . . . . . . . . . . . . . 360 7.5.1 Optical interpretation . . . . . . . . . . . . . . . . . 360 7.5.2 Exact solution . . . . . . . . . . . . . . . . . . . . . 362 7.5.3 Metallic sphere . . . . . . . . . . . . . . . . . . . . . 376 7.6 Discussion on the transition radiation . . . . . . . . . . . . 382 7.6.1 Comment on the transition radiation . . . . . . . . . 385 7.6.2 Comment on the Tamm problem . . . . . . . . . . . 390 8 SELECTED PROBLEMS OF THE SYNCHROTRON RADIATION 397 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 397 8.2 Synchrotron radiation in vacuum. . . . . . . . . . . . . . . . 399 8.2.1 Introductory remarks . . . . . . . . . . . . . . . . . 399 8.2.2 Energy radiated for the period of motion . . . . . . 404 8.2.3 Instantaneous distribution of synchrotron radiation . 407 8.3 Synchrotron radiation in medium . . . . . . . . . . . . . . . 422 8.3.1 Mathematical preliminaries . . . . . . . . . . . . . . 422 8.3.2 Electromagnetic field strengths . . . . . . . . . . . . 423 8.3.3 Singularities of electromagnetic field . . . . . . . . . 424 8.3.4 Digression on the Cherenkov radiation . . . . . . . . 426 8.3.5 Electromagnetic field in the wave zone . . . . . . . . 428 8.3.6 Numerical results for synchrotron motion in a medium434 8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 9 SOME EXPERIMENTAL TRENDS IN THE VAVILOV- CHERENKOV RADIATION THEORY 447 9.1 Fine structure of the Vavilov-Cherenkov radiation. . . . . . 447 9.1.1 Simple experiments with 657 MeV protons . . . . . 451 9.1.2 Main computational formulae . . . . . . . . . . . . . 453 CONTENTS ix 9.1.3 Numerical results . . . . . . . . . . . . . . . . . . . . 462 9.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 463 9.1.5 Concluding remarks to this section . . . . . . . . . . 472 9.2 Observation of anomalous Cherenkov rings. . . . . . . . . . 473 9.3 Two-quantum Cherenkov effect . . . . . . . . . . . . . . . . 473 9.3.1 Pedagogicalexample:thekinematicsoftheone-photon Cherenkov effect . . . . . . . . . . . . . . . . . . . . 474 9.3.2 The kinematics of the two-photon Cherenkov effect . 476 9.3.3 Back to the general two-photon Cherenkov effect . . 483 9.3.4 Relation to the classical Cherenkov effect . . . . . . 485 9.4 Discussion and Conclusion on the Two-Photon Cherenkov Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486 INDEX 489

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.