ebook img

Variational Principles in Physics PDF

247 Pages·2923·3.24 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variational Principles in Physics

Jean-Louis Basdevant Variational Principles in Physics Second Edition Variational Principles in Physics Jean-Louis Basdevant Variational Principles in Physics Second Edition Jean-LouisBasdevant ProfesseurHonoraire DépartementdePhysique ÉcolePolytechnique Paris,France ISBN 978-3-031-21691-6 ISBN 978-3-031-21692-3 (eBook) https://doi.org/10.1007/978-3-031-21692-3 OriginalFrencheditionpublishedbydeBoeckSuperieurS.A.,Louvain-la-Neuve,Belgium,2022 1stedition:©SpringerScience+BusinessMedia,LLC2007 2ndedition:©TheEditor(s)(ifapplicable)andTheAuthor(s),underexclusivelicensetoSpringer NatureSwitzerlandAG2023 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsofreprinting,reuseofillustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface AttheEcolePolytechnique,mymajorteachingactivitywasthegeneralcourseon QuantumMechanics,butIhadmanyopportunitiestogetinterestedinotherfields such as Statistical physics, Particle physics, Energy and the environment. The last courseIconstructedconcernedVariationalPrinciplesinPhysics.Actually,thiswas unexpected:Ihadtoreplaceacolleague. Ihadnotthoughtaboutthatsubjectanditwasreallyadiscoverythattherewas muchmorethanwhatIcouldteach.ButIwasluckyenoughtohaveaninteresting groupofstudentsandcolleagueswhowerehappywhenItoldthemwewouldlearn physicstogether.Thespiritwasexcellent,andtogetherwediscoveredmanyaspects oftheevolutionofphysicsinthemindsofcreativepeople. In the meantime, two basic results occurred in fundamental physics. First, in July 2012, the discovery, at the CERN Large Hadron Collider, of the long antici- patedHiggsBosonwhichcompleted,insomesense,theStandardModelofParticle Physics. On 8 October 2013, the Nobel Prize in Physics was awarded jointly to FrancoisEnglertandPeterHiggs“forthetheoreticaldiscoveryofamechanismthat contributestoourunderstandingoftheoriginofmassofsubatomicparticles...”.A year after, great news occurred with the discovery of the first gravitational waves observedonSeptember14,2015,bytheLIGOandVirgolaboratories,onehundred years after their prediction by Einstein. These will remain the two most important physicaldiscoveriesofthefirstpartofthetwenty-firstcentury. ThephysicsoftheHiggsfieldistoofarfromthepurposeofthisbook.Butitwas obviouslyamusttoaddanewchapterongravitationalwavestothe2007editionof “VariationalPrinciplesinPhysics”.Mycolleagues andstudentssaidthatalthough variationalprinciplesareintellectuallyattractive,ifonedoesnotshowwhattheyaim at,theymayseemformal. Another example is the fact that, around 1840, Hamilton was fascinated by an unknown fact: geometrical optics should be considered as a limiting case of wave optics, and classical mechanics seems to be a similar limit of some yet unknown mechanical theory, but which theory? In 1890, the mathematician Felix Klein deploredthatnoonehadpursuedthatidea.But35yearslater,someofthe“fathers” ofquantummechanics,suchasDiracandLouisdeBroglie,gainedmuchinspiration v vi Preface fromreadingHamilton’sworks.Furthermore,aswedevelopandexplaininChap.9, Richard Feynman in his 1942 Ph.D. dissertation at Princeton, constructed a new versionofquantummechanics:Theprincipleofleastactioninquantummechanics, based on very simple axioms on probability amplitudes, and on the analogy with Hamilton’s“Characteristicfunction”.Thisisanimportantprogress,inparticular,to displayinasimpleway,analogoustotheHuygens–Fresnelprinciple,howclassical mechanicsderivesasthelimitofquantummechanics.Onecanfollowthisinthenew lastchapter,whichhasbeenconsiderablyincreased,inrelationtothenewChap.5 onHamilton’sviewofopticsanditssimilaritywithmechanics. AsimilarremarkholdsforGeneralRelativity.Manymathematiciansofthenine- teenthcentury,suchasGauss,Riemann,andLobachevsky,wereinterestedincurved spaces.IntheLagrange–Hamiltonframework,itispossibletoseethatthefreemotion ofaparticleinacurvedspaceisindependentoftheparticle’smass,sothattheequiv- alenceprincipleofinertialandgravitationalmassisachieved,providedthecurvature givesagoodtrajectory.ThemathematicalworkofEinsteinandMarcelGrossmann consistedoffindingthecurvatureofspace–timethattakesintoaccountgravitation. Laws of nature appear to follow rules expressed mathematically as variational principles. These principles possess two characteristics. First, they are universal. Secondly,theyexpressphysicallawsastheresultsofoptimalequilibriumconditions betweenconflictingcauses.Inotherwords,theypresentnaturalphenomenaasprob- lemsofoptimizationunderconstraints.Thefoundingideaofmodernphysicsisdue to Fermat and his least time principle in optics. This was further developed in the frameworkofthecalculusofvariationsofEulerandLagrange.In1744,Maupertuis foundtheleastactionprincipleinmechanics. Thephilosophicalimpactofthediscoveryofsuchprinciplesofnaturaleconomy wasconsiderableintheeighteenthcentury.However,themetaphysicalenthusiasm didnotlastlongbecausevariationalprincipleshaveconstantlyproducedmoreand more profound physical results, many of which underlie contemporary theoretical physics.Theambitionofthisbookistodescribesomeoftheirphysicalapplications. Wewillseehowsuchideashavegeneratedmostifnotallphysicalconceptsofthe presenttime. Afterpresentingandanalyzingsomeexamples,thecoreofthisbookisdevoted totheanalyticalmechanicsofLagrangeandHamilton,whichisamustintheculture ofanyphysicistofourtime.Thetoolsthatwedevelopwillalsobeusedtopresent theprinciplesofLagrangianfieldtheory. Wethenstudythemotionofaparticleinacurvedspace.Thisallowsustohavea simplebutrichtasteofgeneralrelativityanditsfirstandmostfamousapplications amongwhichgravitationalopticsallowsustoprobetheuniverseatveryfardistances, aswellastheGPSguidingsystem. At this point, we can penetrate General Relativity and Einstein’s equations by analyzingtheproductionandthereceptionofthegravitationalwavesthatwehave mentionedaboveandweredetectedonearth. Inthelastchapter,wepresentanewversionofthetheoryofFeynmanpathintegrals inquantummechanics.WeshallthenbeabletoappreciatehowclosetheFeynman approach is to direct intuitive quantities, space and time, to the ensuing extension Preface vii of these ideas to a relativistic approach, and to prove that classical mechanics is thelimitofquantummechanicswhenPlanck’sconstant(cid:2)isnegligiblecomparedto otherphysicalquantities. I was struck by the interest that students found in this aspect of physics. They discoveredaculturalcomponentofsciencethattheydidnotexpect.Forthatreason, teachingthiswasaveryrewardingpieceofwork. IwarmlythankProf.ChristophKopper,whotookoverthiscourseattheEcole Polytechnique.IowemuchtoDavidLanglois,AssociateProfessorwhoallowedme to study his course and his book on General Relativity. I am extremely grateful to mycolleagueAndréRougéforhisusefulcommentsandsuggestions. IamverygratefultoJamesRich,whowasabletoextractmefromthetraditional Frenchacademismandmakemesharehiscreativeenthusiasmforphysics.Partof Chap.7isdirectlyinspiredbyhisworkinadifferentcontext. IthankmycolleaguesandfriendsAdelBilal,FrançoisJacquet,andJean-François Rousselforalltheircommentsandsuggestionswhenwewereteachingthismatter andhavingfuntogether. ImustthankmymathematiciancolleaguesJean-MichelBony,Jean-PierreBour- guignonandAlainGuichardet.Theyhelpedmetoavoidspendingtimeondifficult problemsthatwerenotnecessary. Finally,Iwanttothankmystudents,inparticularClaireBiot,AmélieDeslandes, Juan Luis Astray Riveiro, Clarice Aiello Demarchi, Joëlle Barral, Zoé Fournier, CélineVallot,andJulienBoudet,fortheirquestionsandtheirkindcomments.They have provided this book with a flavor and a spirit of youth that would have been absentwithoutthem. Paris,France Jean-LouisBasdevant September2022 Contents 1 StructureofPhysicalTheories .................................. 1 2 VariationalPrinciples .......................................... 11 2.1 Fermat’sLeastTimePrinciple ................................ 13 2.2 VariationalCalculusofEulerandLagrange .................... 17 2.2.1 FirstIntegrals,CyclicVariables ........................ 18 2.2.2 MiragesandCurvedRays ............................. 19 2.3 Maupertuis,PrincipleofLeastAction ......................... 22 2.3.1 ElectrostaticPotential ................................ 23 2.4 ThermodynamicEquilibrium:MaximalDisorder ................ 25 2.4.1 PrincipleofEqualProbabilityofStates .................. 25 2.4.2 MostProbableDistributionandEquilibrium ............. 26 2.4.3 LagrangeMultipliers ................................. 27 2.4.4 BoltzmannFactor .................................... 27 2.4.5 EqualizationofTemperatures .......................... 29 2.4.6 TheIdealGas ....................................... 30 2.4.7 Boltzmann’sEntropy ................................. 31 2.4.8 HeatandWork ...................................... 32 2.5 Exercises .................................................. 33 2.6 Problem.WinaDownhill .................................... 35 3 TheAnalyticalMechanicsofLagrange ........................... 37 3.1 LagrangianFormalismandLeastAction ....................... 39 3.1.1 LeastActionPrinciple ................................ 39 3.1.2 Lagrange–EulerEquations ............................ 40 3.1.3 OperationoftheOptimizationPrinciple ................. 43 3.2 InvariancesandConservationLaws ........................... 43 3.2.1 ConjugateMomentaandGeneralizedMomenta .......... 44 3.2.2 CyclicVariables ..................................... 44 3.2.3 EnergyandTranslationsinTime ....................... 45 3.2.4 NoetherTheorem:SymmetriesandConservationLaws .... 47 3.2.5 MomentumandTranslationsinSpace ................... 48 ix x Contents 3.2.6 AngularMomentumandRotations ..................... 48 3.2.7 DynamicalSymmetries ............................... 49 3.3 Velocity-DependentForces .................................. 50 3.3.1 DissipativeSystems .................................. 50 3.3.2 LorentzForce ....................................... 51 3.3.3 GaugeInvariance .................................... 53 3.3.4 Momentum ......................................... 53 3.4 LagrangianofaRelativisticParticle ........................... 54 3.4.1 LorentzTransformation ............................... 54 3.4.2 FreeParticle ......................................... 55 3.4.3 EnergyandMomentum ............................... 56 3.4.4 InteractionwithanElectromagneticField ............... 57 3.5 Exercises .................................................. 59 3.6 Problem.StrategyofaRegatta ............................... 60 4 Hamilton’sCanonicalFormalism ................................ 63 4.1 Hamilton’sCanonicalFormalism ............................. 65 4.1.1 CanonicalEquations .................................. 65 4.2 PoissonBrackets,PhaseSpace ............................... 66 4.2.1 TimeEvolution,ConstantsoftheMotion ................ 67 4.2.2 RelationBetweenAnalyticalandQuantumMechanics .... 68 4.3 CanonicalTransformationsinPhaseSpace ..................... 70 4.4 EvolutioninPhaseSpace:Liouville’sTheorem ................. 74 4.5 ChargedParticleinanElectromagneticField ................... 75 4.5.1 Hamiltonian ......................................... 76 4.5.2 GaugeInvariance .................................... 76 4.6 DynamicalSystems ......................................... 77 4.6.1 TheContributionofHenriPoincaré ..................... 77 4.6.2 PoincaréandChaosintheSolarSystem ................. 78 4.6.3 Poincaré’sRecurrenceTheorem ........................ 79 4.6.4 TheButterflyEffect;theLorenzAttractor ............... 80 4.7 Exercises .................................................. 82 4.8 Problem.ClosedChainofCoupledOscillators .................. 84 5 Action,Optics,Hamilton-JacobiEquation ........................ 87 5.1 GeometricalOptics,CharacteristicFunctionofHamilton ......... 89 5.2 ActionandtheHamilton-JacobiEquation ...................... 92 5.2.1 TheActionasaFunctionofCoordinatesandTime ........ 92 5.2.2 LeastActionPrinciple ................................ 94 5.2.3 Hamilton-JacobiEquation ............................. 95 5.2.4 ConservativeSystems,ReducedAction,Maupertuis Principle ............................................ 96 5.3 Semi-ClassicalApproximationinQuantumMechanics .......... 98 5.4 Hamilton-JacobiFormalism .................................. 100 5.5 Exercises .................................................. 102 Contents xi 6 LagrangianFieldTheory ....................................... 105 6.1 VibratingString ............................................ 106 6.2 FieldEquations ............................................ 107 6.2.1 GeneralizedLagrange–EulerEquations ................. 107 6.2.2 HamiltonianFormalism ............................... 108 6.3 ScalarField ................................................ 110 6.4 ElectromagneticField ....................................... 110 6.5 EquationsofFirstOrderinTime .............................. 114 6.5.1 DiffusionEquation ................................... 114 6.5.2 SchrödingerEquation ................................. 115 6.6 Problem ................................................... 116 7 MotioninaCurvedSpace ....................................... 117 7.1 TheEquivalencePrinciple ................................... 117 7.2 CurvedSpaces ............................................. 119 7.2.1 Generalities ......................................... 119 7.2.2 TheLightRays,GeodesicsofOurSpace ................ 120 7.2.3 MetricTensor ....................................... 121 7.2.4 Examples ........................................... 122 7.3 FreeMotioninaCurvedSpace ............................... 123 7.3.1 Lagrangian .......................................... 124 7.3.2 EquationsofMotion .................................. 124 7.3.3 SimpleExamples .................................... 125 7.4 GeodesicLines ............................................. 127 7.4.1 Definition ........................................... 127 7.4.2 EquationoftheGeodesics ............................. 128 7.4.3 Examples ........................................... 129 7.4.4 MaupertuisPrincipleandGeodesics .................... 131 7.5 GravitationandtheCurvatureofSpace-Time ................... 133 7.5.1 NewtonianGravitationandRelativity ................... 133 7.5.2 TheSchwarzschildMetric ............................. 134 7.5.3 GravitationandTimeFlow ............................ 136 7.5.4 PrecessionofMercury’sPerihelion ..................... 136 7.5.5 GravitationalDeflectionofLightRays .................. 141 7.6 GravitationalOpticsandMirages ............................. 144 7.6.1 GravitationalLensing ................................. 145 7.6.2 GravitationalMirages ................................. 145 7.6.3 ObservationofaDoubleQuasar ........................ 147 7.6.4 BaryonicDarkMatter ................................ 151 7.7 Exercises .................................................. 155 7.8 Problem.MotionontheSphereS3 ............................ 157

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.