VA RIATIONAL METHODS AND COMPLEMENTARY FORMULATIONS INDYNAMICS SOLID MECHANICS AND ITS APPLICATIONS Volume 31 Series Editor: G.M.L. GLADWELL Solid Mechanics Division, Faculty ofE ngineering University ofWaterloo Waterloo, Ontario, Canada N2L 3Gl Aims and Scope of the Series The fundamental questions arising in mechanics are: Why?, How?, and How much? The aim of this series is to provide lucid accounts written by authoritative research ers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids. The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies; vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design. The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity. For a list ofrelated mechanics titles, seefinal pages. Variational Methods and Complementary Formulations in Dynamics by B. TABARROK Department of Mechanical Engineering, University of Victoria, Victoria, Canada and F.P.J. RIMROTT Department of Mechanical Engineering, University of Toronto, Toronto, Canada SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A C.I.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-90-481-4422-8 ISBN 978-94-015-8259-9 (eBook) DOI 10.1007/978-94-015-8259-9 Printed on acid-free paper AII Rights Reserved © 1994 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1994 Softcover reprint of the hardcover 1s t edition 1994 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Dedicated to Carolyn and Doreen Table of Contents Preface ................................................................................................................................. xi Chapter I -FUNDAMENTALS ....................................................................................... . A Historical Note ............................................................................................................... . 1.1 Review of Basic Concepts .......................................................................................... 2 1.2 Generalized Displacement Variables ......................................................................... 14 1.3 Degrees of Freedom aud Constraints ....................................................................... 18 Holonomic Constraints ................................................................................................ 18 Reduced Transformation Equations ............................................................................ 21 Nonholonomic Constraints .......................................................................................... 22 1.4 Virtual Displacements and Virtual Work ................................................................ 26 Rheonomic Constraints ..... ....... ........ ........ ........ ......... ... ........ ..... ... .... ................ ........ ... 29 Generalized Forces .... .... ........ ..... ........... ........ ................ ........ ....... ..... ............. .... ......... 30 1.5 Work Function and Potential Energy ....................................................................... 33 Other Forms of Potential Energy . ... .... ............ ..... ... ......... ... .... ................. ....... ..... ... .... 39 1.6 Stability of Static Equilibrium .................................................................................. 41 1.7 A Second Look at the Expression for Increment of Work ..................................... 49 1.8 Energies and Complementary Energies ........ ........ ........ .... .... ........ .... ........ ............ .... 52 Potential Energy aud Complementary Potential Energy ............................................. 52 Kinetic Energy aud Complementary Kinetic Energy ..... ... ........ ..... .................. ..... ...... 54 1.9 Kinetic Energy and Complementary Kinetic Energy in Terms of Generalized Displacements .... .... ............ ........ ........ .... .... .... ............ .... ........ ............ .... 58 Suggested Reading ......... ........... ..... ....... .... ......... ................ ... ................ ................ ..... ... ..... 64 Chapter II - DIFFERENTIAL VA RIATIONAL FORMULA TIONS ........................... 67 2.1 D' Alembert's Principle ............................................................................................... 67 2.2 Complementary Form of D' Alembert's Principle ................................................... 72 2.3 Conservation of Energy ......... ... .... ........................ .... .... ..... ................... ........ ........ ..... 78 2.4 Gauss' Principle of Least Constraint ....................................................................... 81 2.5 Configuration Space and Hertz' Principle of Least Curvature .............................. 84 2.6 Lagrange's Equations ................................................................................................. 88 2.7 Invariance of Lagrange's Equations ......................................................................... 94 viii 2.8 Complementary Form of Lagrange's Equations ..................................................... 97 2.9 Dissipation Forces ....................................................................................................... 105 2.10 Limitations of the Complementary Formulation ................................................... 113 Suggested Reading ........ ................................ ............ ............ ................ .................... ......... 117 m - Chapter INTEGRAL VARIATIONAL FORMULATIONS .................................. 119 3.1 Hamilton's Principle ................................................................................................... 119 3.2 Complementary Form of Hamilton's Principle ....................................................... 123 3.3 Lagrange's Equations from Hamilton's Principle ............................ ....................... 126 3.4 Conservation of Energy ............................................................................................. 127 3.5 Change of Energy Over a Period of Time ............................................................... 135 3.6 Constraint Equations and Lagrange Multipliers .................... ................................. 138 Holonomic Constraints ................................................................................................ 138 Nonholonomic Constraints .......................................................................................... 142 3.7 Ignorable Coordinates ................................................................................................ 150 3.8 Hamilton's Canonical Equations ............................................................................... 157 3.9 Complementary Canonical Equations ...................................................................... 164 3.10 Elimination of Ignorable Coordinates ...................................................................... 168 3.11 Phase Space and State Space ............................................................ ........................ 170 3.12 Hydrodynamic Analogy ........................................................................ ........ ............. 174 3.13 Principle of Least Action ..... ... .... ..... ... .... .... .... .... .... ........ .... .... .... ........ ....... ..... ........... 177 3.14 Jacobian Form of the Principle of Least Action ..................................................... 185 3.1S Some Generalizations of the Principle of Least Action ........ ..... ... ........ .... .............. 188 Suggested Reading ............................................................................................................. 192 Chapter IV -CANONICAL TRANSFORMATIONS AND THE HAMILTON- JACOBI EQUATION ........................................................................................................ 193 Introduction ........................................................................................................................ 193 4.1 Canonical Transformations ....................................................................................... 193 4.2 Infinitesimal Canonical Transformations .... .... ........ .... ... ..... ........ ................ .... .... ..... 199 4.3 Hamilton-Jacobi Equation ................................ .................... ........................ ............. 200 4.4 Hamilton's Characteristic Function .......................................................................... 208 4.5 Hamilton's Optico-Mechanical Analogy ................................................................... 209 Suggested Reading ............................................................................................................. 213 ix Chapter V - RIGID BODY DYNAMICS ........................................................................ 215 Introduction ........................................................................................................................ 215 5.1 Rotating Coordinate System ...................................................................................... 215 5.2 Momentum Velocity Relation .................................................................................... 219 5.3 Rotational Kinetic Energy and Kinetic Coenergy .... .... .... .... .... .... .... .... ....... ..... ....... 226 5.4 Euler Equations ........................ ............. ........................... ........ ................ ..... ............. 227 5.5 Euler Angles ................................................ ............................ ............................. ....... 231 5.6 Components of 00, Hand M in Different Coordinate Systems .............................. 236 5.7 Angular Momentum, Kinetic Energy and Coenergy in Terms of Euler Angles ........................................................................................................................... 239 5.8 Lagrange's Equations ................................................................................................. 244 5.9 Other Generalised Variables for Describing Angular Positions ............................. 249 Suggested Reading .... .... ... ..... ........ ........ .... .... .... ........ .... .... .... ........ .... .... ............ .... .... ......... 250 Chapter VI - SPECIAL APPLICATIONS ...................................................................... 251 Introduction ......... ... ................................................................. ... .... ............................. ....... 251 6.1 Approximate Expressions for T*, V, D, and '6W/ ................................................ 251 6.2 Free Undamped Oscillations ............ .... ..... ... .... .... .... ........ .... ............ .... .... .... ........ ...... 256 Orthogonality of Modes of Vibration .................................. .... ................ ................. 260 6.3 Modal Matrix and Decoupling of Equations of Motion ........ ........ .... .... .... ........ ...... 265 6.4 Forced Undamped Oscillations .... ........ ........ .... .... .... ........ ........ ........ .... ........ ........ ...... 270 6.5 Free Damped Oscillations .... ........ .... .... ........ .... .... .... ........ .... .... ........ ........ .... .............. 274 6.6 Forced Damped Oscillations ........ .... .... ........ .... ........ ........ ........ ............ .... .... ....... ....... 276 6.7 Small Oscillations about Steady Motion ................................................................... 277 Taylor Series Expension ofRouthian ....................................................................... 279 6.8 Solution of the Linear Equations of Motion .. ............... ....... ........................ ............ 283 6.9 System Response to a Step Impulse .......................................................................... 286 Lagrangian Method ........ .... ........ ........ .... .... ........ .... .... .... ........ .... ............ .... ........ .... ..... 286 Constraint Consideration ......... ....... .... ................ ......... .................... ........... ..... ....... ..... 290 Energy Change .... .... .... ........ .... .... ..... ... .... .... ............ .... .... ........ .... ........ ........ .... .... .... .... 293 Bertrand's Theorem .................................................................................................... 296 Kelvin's Theorem ...................................................................................................... . 298 Carnot's Theorem ...................................................................................................... . 300 6.10 System Response to a Step Displacement ............................................................... 302 Analogue of Bertrand's Theorem ............................................................................... 305 x Ana10gue of Kelvin's Theorem ...................................................................... 306 Analogue of Carnot's Theorem ...................................................................... 306 Suggested Reading ................ ................ .................... ........ .................... ................. 307 Appendix A -THE CALCULUS OF VARIA TIONS ........................................ 309 Introduction ........................................................................................................... 309 A.I Fundions and Functionals .................................... ................ ............ ........... 309 A.2 Review of Extremum Values of Functions .................... ............ ........ ......... 311 A.3 Stationary Values of Definite Integrals ....................................................... 317 A.4 A Note about Weak and Strong Variations ............................................... 323 A.5 An Alternative Expression for a Single Euler-Lagrange Equation ........... 323 A.6 The Brachystochrone Problem ............................ ........................ ................ 324 A.7 Path-independent Functionals ........ .... .... ..... ........... .... ........ .... ........ ... ..... ...... 327 A.8 Several Dependent Functions ................................................ ............ ........ ... 329 A.9 Variational Notation ......................................... ,. ..... .... .... ........ .... .... .... .... ..... 332 A.IO Constraint Equations ................................................ .................... .............. 335 Lagrange Multipliers .. ,. .... .... .... .... .... .... .... .... .... .... .... ..... ... .... .... .... ..... ....... .... ... 337 Algebraic and Differential Equation Constraints . .... ............ .... ... ......... ... .... ..... 341 A.II Variable End Points ................................................ ~.................................. 343 Suggested Reading ............................ ................................................ ........ ........ ..... 348 Appendix B -DEVELOPMENTS IN MECHANICS -SOME mSTORICAL PERSPECTIVES ........................................................................ 349 Author Index ......................................................................................................... 361 Subject Index .... ............ .................................................................... ........ ........ ..... 363 Preface Not many disciplines can c1aim the richness of creative ideas that make up the subject of analytical mechanics. This is not surprising since the beginnings of analyti cal mechanics mark also the beginnings of the theoretical treatment of other physical sciences, and contributors to analytical mechanics have been many, inc1uding the most brilliant mathematicians and theoreticians in the history of mankind. As the foundation for theoretical physics and the associated branches of the engineering sciences, an adequate command of analytical mechanics is an essential tool for any engineer, physicist, and mathematician active in dynamics. A fascinating dis cipline, analytical mechanics is not only indispensable for the solution of certain mechanics problems but also contributes so effectively towards a fundamental under standing of the subject of mechanics and its applications. In analytical mechanics the fundamental laws are expressed in terms of work done and energy exchanged. The extensive use of mathematics is a consequence of the fact that in analytical mechanics problems can be expressed by variational State ments, thus giving rise to the employment of variational methods. Further it can be shown that the independent variables may be either displacements or impulses, thus providing in principle the possibility of two complementary formulations, i.e. a dis placement formulation and an impulse formulation, for each problem. This duality is an important characteristic of mechanics problems and is given special emphasis in the present book. The book begins by discussing fundamental concepts such as coordinate transfor mation, degrees of freedom, virtual displacement and virtual work, holonomic and nonholonomic constraints, work, potential energy, duality, complementary potential energy, kinetic energy, complementary kinetic energy, and generalized variables, alI in the fust chapter. Readers not familiar with variational methods are now directed to Appendix A, which is devoted to the calculus of variations, and introduces concepts such as func tions and functionals, extrema, the Euler-Lagrange equations, extrema of functionals subject to some constraints, and functionals with variable end points. In the second chapter variational methods are used to develop extremum formula tions of differential type for problems in dynamics. It begins with D' Alembert's prin ciple, and then introduces Gauss' principle of least constraint, Hertz' principle of least curvature in configuration space, and ends with Lagrange's equation, in dual represen tation, i.e. in displacement and impulse variables. The third chapter presents variational methods in integral form. Duality, e.g. for mulation in conventional and complementary form, is again emphasized, and Hamilton' s principle is discussed, as is the significance of Lagrange multipliers, and the concept of ignorable coordinates. The fourth chapter deals with canonical transformations, the fifth is devoted to the applications of variational methods in gyrodynamics and the sixth chapter illustrates some of the foregoing theory in special applications. The text is intended for senior undergraduate or for graduate students, as weB as for engineers, physicists, and mathematicians engaged in work in the multifarious branches of theoretical and applied mechanics. xi