ebook img

Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide: A Hands-on Field Guide PDF

197 Pages·2013·4.625 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide: A Hands-on Field Guide

Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide Trent McConaghy Kristopher Breen • Jeffrey Dyck Amit Gupta • Variation-Aware Design of Custom Integrated Circuits: A Hands-on Field Guide With Foreword by James P. Hogan 123 Trent McConaghy Jeffrey Dyck SolidoDesign AutomationInc. SolidoDesign AutomationInc. Saskatoon, SK Saskatoon, SK Canada Canada Kristopher Breen Amit Gupta SolidoDesign AutomationInc. SolidoDesign AutomationInc. Saskatoon, SK Saskatoon, SK Canada Canada ISBN 978-1-4614-2268-6 ISBN 978-1-4614-2269-3 (eBook) DOI 10.1007/978-1-4614-2269-3 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2012943974 (cid:2)SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyrightLawofthePublisher’slocation,initscurrentversion,andpermissionforusemustalways beobtainedfromSpringer.PermissionsforusemaybeobtainedthroughRightsLinkattheCopyright ClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Chapter 1: Introduction Set topology Initial sizing Extract Corners (PVT / Statistical / High- ) Chapter 2: PVT Chapter 6: Chapter 3, 4: Statistical Design Chapter 5: High- Sizing on Corners Exploration Fast Verify (PVT / Statistical / High- ) Layout Extract Parasitics Verify with Parasitics on Corners Chapter 7: Conclusion Foreword After more than 35 years in the semiconductor business, I find that custom inte- gratedcircuit(IC)designcontinuestopresentextremelyinterestingchallenges.In this book, Trent McConaghy, Kristopher Breen, Jeff Dyck, and Amit Gupta, all with Solido Design Automation, address the increasingly difficult design issues associated with variation in advanced nanoscale processes. The authors have put together what I believe will become an invaluable ref- erence for best practices in variation-aware custom IC design. They have taken theory and combined it with methodology and examples, based on their experi- ences in supplying leading-edge design tools to the likes of TSMC and NVIDIA. This book’s content is useful for circuit designers, CAD managers and CAD researchers. This book will also be very useful to graduate students as they begin their careers in custom IC design. I have always felt that the job of a designer is to optimize designs to what the requirements dictate, within the process capabilities. Circuits must trade off the marketing requirements of function, performance, cost, and power. This is espe- cially true for custom IC design, where the results are on a continuum. There is never a perfect answer—only the most right, or equivalently, the least wrong. Moore’s Law—the practice of shrinking transistor sizes over time—has tradi- tionally been a no-brainer, since smaller devices directly led to improved power, performance, and area. Several decades into Moore’s Law, today’s IC manufac- turinghasliterallyreachedthelevelof‘‘nanotech’’,withminimumdevicesizesat 40, 28, 20 nm, and most recently 14 nm. Variation in devices during manufac- turing has always been around, but it has not traditionally been a big issue. The problemisthatvariationgetsexponentiallyworseasthedevicesshrink,andithas become a major problem at these nano nodes. Designers must choose between over-margining so that the circuit yields (taking a performance hit), or to push performance (taking a yield hit). Variation has made it harder to differentiate ICs on power or performance, while still yielding. The use of common commercial foundries, such as TSMC, GLOBALFOUNDRIES, Samsung, and even now Intel, makes it even more dif- ficulttodifferentiatecompetitively.Performancehitsareunacceptable,becauseall vii viii Foreword semiconductor companies are using the same foundries trying to produce com- petitive chips. In turn, yield hits are unacceptable for high volume applications since costs quickly skyrocket. Moore’sLawandopportunitiesfordifferentiationarethelifebloodofahealthy semiconductor industry. Variation is threatening both. I’ve known Trent for several years now, since when he was co-founder of AnalogDesignAutomation(acquiredbySynopsys)intheearly 2000s.Heearned hisPh.D.atKULeuvenUniversityunderthesupervisionofGeorgesGielen,andis now currently co-founder and CTO of Solido Design Automation. I love Trent’s personal story as well. He grew up on a pig farm in Saskatch- ewan.Asofthiswriting,Saskatchewanis251,700squaremileswithapopulation ofjust over 1 million souls.Incontrast, California is 163,696 squaremiles with a population of 37 million souls. And Saskatchewan gets cold. Trent once told me a story about farm life. When the weather gets to about -40(cid:3) (it is the same in Celsius or Fahrenheit), it freezes the valves for the pigs’ outdoor watering bowls. To prevent damage to the plumbing, he had to pour hot water over the valves to thaw the ice, then re-fasten some tiny bolts. This latter steprequiredtakinghisglovesoff.Hehadabout15stofastentheboltsandgethis gloves back on before freezing his fingers (and risking frostbite). Trent is a fountain of amazing farm stories from his boyhood. I grew up in California, and thebiggestobstacleIhadtostartingthedaywasdecidingifIwasgoingtoweara long or short sleeve shirt that day. These experiences surely had a huge influence in building Trent’s character. AsIhavecometoknowTrent,Ihavealsolearnedthathehasabroadrangeof interests,fromneuroscience,tomusic,toart.Hecomplementshiswife,whoisan art curator with world-class training (Sorbonne, Paris) and work experience (The Louvre,Paris).TrentistrulyauniqueandentertainingrenaissancemanintheDa Vinci tradition. Onthetechnicalside,Trenthasauniqueabilitytoinventalgorithmsthatsolve realdesignchallenges,butnotstopthere.Hetakesthealgorithmspastthestageof prototype software that solves academic problems, shepherding them into com- mercial software usable by real designers doing production circuit design. At Solido, Trent has worked closely with Jeff Dyck, Kristopher Breen, and Solido’s product development team, to deliver industrial-scale variation solutions. ThisbookhelpscustomICdesignerstoaddressvariationissues,inaneasy-to- readandpragmaticfashion.Ibelievethisbookwillbecomeaninvaluableresource tothecustomICdesignerfacingvariationchallengesinhis/hermemory,standard cell, analog/RF, and custom digital designs. Enjoy the read… and never miss a chance to talk or listen to Trent! Los Gatos, CA, July 2012 Jim Hogan Acknowledgments This book is the culmination of work by the authors and their colleagues, stretching back nearly a decade, in building variation-aware tools for circuit designers. It is a distillation of successful and not-so-successful ideas, of lessons learned, all geared towards making better designs despite variation issues. We would like to thank those who reviewed the book, and provided extensive and valuable suggestions: Drew Plant, Mark Smith, Tom Eeckelaert, Jim Hogan, andGloriaNichols.Thankstothosewhohavehelpedtoprovideandpreparereal- world design examples: Ting Ku, Hassan Sharghi, Joel Amzallag, Drew Plant, Jiandong Ge,AnthonyHo,andRoshanThomas.Thankstotherestoftheteamin Solido Design Automation, who have helped us build and deliver high-quality tools. Thanks to the Solido investors and Solido board, without whom this work would not have been possible. Thanks to our users and our partners, who have helped us shape our tools and methodologies for real-world use. Finally,thankyouforpickingupthisbook!Wehopethatyoufindituseful(and valuable) in your own work. Solido Design Automation Inc. Trent McConaghy Canada, July 2012 Kristopher Breen Jeff Dyck Amit Gupta ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Key Variation Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Types of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.2 Types of Variation. . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.3 Key Variation-Related Terms . . . . . . . . . . . . . . . . . . 6 1.3 Status Quo Design Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 A Fast, Accurate Variation-Aware Design Flow . . . . . . . . . . . 9 1.5 Conclusion/Book Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Fast PVT Verification and Design. . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Review of Flows to Handle PVT Variation. . . . . . . . . . . . . . . 15 2.2.1 PVT Flow: Full Factorial . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 PVT Flow: Guess Worst-Case. . . . . . . . . . . . . . . . . . 16 2.2.3 PVT Flow: Guess Worst-Case ? Full Verification. . . . 17 2.2.4 PVT Flow: Good Initial Corners ? Full Verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.5 PVT Flow: Fast PVT . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.6 Summary of PVT Flows. . . . . . . . . . . . . . . . . . . . . . 20 2.3 Approaches for Fast PVT Corner Extraction and Verification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Full Factorial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.2 Designer Best Guess. . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.3 Sensitivity Analysis (Orthogonal Sampling, Linear Model). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.4 Quadratic Model (Traditional DOE). . . . . . . . . . . . . . 22 2.3.5 Cast as Global Optimization Problem (Fast PVT) . . . . 22 xi xii Contents 2.4 Fast PVT Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4.1 Overview of Fast PVT Approach. . . . . . . . . . . . . . . . 23 2.5 Fast PVT Verification: Benchmark Results. . . . . . . . . . . . . . . 25 2.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.3 Post-Layout Flows. . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5.4 Fast PVT for Multiple Outputs and Multiple Cores . . . 27 2.5.5 Fast PVT Corner Extraction Limitations. . . . . . . . . . . 27 2.5.6 Fast PVT Verification Limitations. . . . . . . . . . . . . . . 27 2.5.7 Guidelines on Measurements. . . . . . . . . . . . . . . . . . . 28 2.6 Design Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6.1 Corner-Based Design of a Folded-Cascode Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6.2 Low-Power Design. . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 Fast PVT: Discussion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Appendix A: Details of Fast PVT Verification Algorithm. . . . . 33 Appendix B: Gaussian Process Models. . . . . . . . . . . . . . . . . . 36 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3 A Pictorial Primer on Probabilities. . . . . . . . . . . . . . . . . . . . . . . . 41 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2 One-Dimensional Probability Distributions . . . . . . . . . . . . . . . 41 3.3 Higher-Dimensional Distributions . . . . . . . . . . . . . . . . . . . . . 43 3.4 Process Variation Distributions . . . . . . . . . . . . . . . . . . . . . . . 45 3.5 From Process Variation to Performance Variation . . . . . . . . . . 46 3.6 Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.7 Interpreting Performance Distributions . . . . . . . . . . . . . . . . . . 48 3.8 Histograms and Density Estimation . . . . . . . . . . . . . . . . . . . . 52 3.9 Statistical Estimates of Mean, Standard Deviation, and Yield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.10 Normal Quantile Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.11 Confidence Intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.11.1 Confidence Interval for Mean (P1). . . . . . . . . . . . . . . 60 3.11.2 Confidence Interval for Standard Deviation (P2) . . . . . 60 3.11.3 Confidence Interval for Yield (P3). . . . . . . . . . . . . . . 61 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4 3-Sigma Verification and Design. . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Review of Flows that Handle 3-Sigma Statistical Variation. . . . 66 4.2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.2 Flow: PVT (with SPICE) . . . . . . . . . . . . . . . . . . . . . 67 4.2.3 Flow: PVT ± 3-Stddev Monte Carlo Verify . . . . . . . . 68 Contents xiii 4.2.4 Flow: PVT + Binomial Monte Carlo Verify . . . . . . . . 70 4.2.5 Flow: PVT with Convex Models . . . . . . . . . . . . . . . . 71 4.2.6 Flow: Direct Monte Carlo. . . . . . . . . . . . . . . . . . . . . 73 4.2.7 Flow: Light + Heavy Direct Monte Carlo. . . . . . . . . . 73 4.2.8 Flow: Linear Worst-Case Distances . . . . . . . . . . . . . . 74 4.2.9 Flow: Quadratic Worst-Case Distances. . . . . . . . . . . . 75 4.2.10 Flow: Response Surface Modeling. . . . . . . . . . . . . . . 75 4.2.11 Flow: Sigma-Driven Corners. . . . . . . . . . . . . . . . . . . 77 4.2.12 Summary of Flows for Three-Sigma Statistical Design. . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.3 Sigma-Driven Corner Extraction . . . . . . . . . . . . . . . . . . . . . . 80 4.3.1 Sigma-Driven Corner Extraction with 1 Output. . . . . . 81 4.3.2 Benchmark Results on Sigma-Driven Corner Extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.3.3 Sigma-Driven Corner Extraction with[1 Output: Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.4 Confidence-Driven 3r Statistical Verification . . . . . . . . . . . . . 87 4.5 Optimal Spread Sampling for Faster Statistical Estimates. . . . . 88 4.5.1 Pseudo-Random Sampling and Yield Estimation . . . . . 88 4.5.2 Issues with Pseudo-Random Sampling . . . . . . . . . . . . 90 4.5.3 The Promise of Well-Spread Samples. . . . . . . . . . . . . 90 4.5.4 The ‘‘Monte Carlo’’ Label. . . . . . . . . . . . . . . . . . . . . 91 4.5.5 Well-Spread Sequences. . . . . . . . . . . . . . . . . . . . . . . 92 4.5.6 Low-Discrepancy Sampling: Introduction . . . . . . . . . . 92 4.5.7 OSS Experiments: Speedup in Yield Estimation?. . . . . 93 4.5.8 OSS Experiments: Convergence of Statistical Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.5.9 Assumptions and Limitations of Optimal Spread Sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.6 Design Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.6.1 How Many Monte Carlo Samples?. . . . . . . . . . . . . . . 98 4.6.2 Corner-Based Design of a Flip-Flop. . . . . . . . . . . . . . 100 4.6.3 3-Sigma Design of a Folded-Cascode Amplifier . . . . . 101 4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Appendix A: Density-Based Yield Estimation on[1 Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Appendix B: Details of Low-Discrepancy Sampling. . . . . . . . . 108 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5 High-Sigma Verification and Design. . . . . . . . . . . . . . . . . . . . . . . 115 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.1.1 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 5.1.2 The Challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.