Variation-Aware Analog Structural Synthesis ANALOGCIRCUITSANDSIGNALPROCESSINGSERIES ConsultingEditor:MohammedIsmail.OhioStateUniversity Forothertitlespublishedinthisseries,goto www.springer.com/series/7381 Trent McConaghy (cid:129) Pieter Palmers (cid:129) Peng Gao Michiel Steyaert (cid:129) Georges Gielen Variation-Aware Analog Structural Synthesis A Computational Intelligence Approach 123 Dr.TrentMcConaghy Prof.MichielSteyaert SolidoDesignAutomation,Inc. KatholiekeUniversiteitLeuven 102-116ResearchDrive DepartmentofElectricalEngineering SaskatoonSKS7N3R3 (ESAT) Canada KasteelparkArenberg10 [email protected] 3001Leuven Belgium [email protected] Dr.PieterPalmers MephistoDesignAutomation NV(MDA) Prof.GeorgesGielen Romeinsestraat18 KatholiekeUniversiteitLeuven 3001Heverlee DepartmentofElectrotechnicalEngineering Belgium Div.Microelectronics&Sensors(MICAS) KasteelparkArenberg10 3001Leuven PengGao Belgium KatholiekeUniversiteitLeuven [email protected] DepartmentofElectricalEngineering (ESAT) KasteelparkArenberg10 3001Leuven Belgium ISSN ISBN978-90-481-2905-8 e-ISBN978-90-481-2906-5 DOI10.1007/978-90-481-2906-5 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009927593 (cid:2)c SpringerScience+BusinessMediaB.V.2009 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Summary of Contents “This page left intentionally blank.” Contents Preface xi AcronymsandNotation xv 1. Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background andContributions toAnalogCAD . . . . . . . . 4 1.3 Background andContributions toAI . . . . . . . . . . . . . . 17 1.4 AnalogCADIsaFruitflyforAI . . . . . . . . . . . . . . . . 24 1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2. Variation-AwareSizing:Background 27 2.1 Introduction andProblemFormulation . . . . . . . . . . . . 27 2.2 ReviewofYieldOptimization Approaches . . . . . . . . . . 32 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3. GloballyReliable,Variation-AwareSizing:SANGRIA 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Foundations: Model-Building Optimization (MBO) . . . . . . 48 3.3 Foundations: Stochastic GradientBoosting . . . . . . . . . . 53 3.4 Foundations: Homotopy . . . . . . . . . . . . . . . . . . . . 59 3.5 SANGRIAAlgorithm . . . . . . . . . . . . . . . . . . . . . 59 3.6 SANGRIAExperimentalResults . . . . . . . . . . . . . . . 70 3.7 OnScalingtoLargerCircuits . . . . . . . . . . . . . . . . . 82 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4. KnowledgeExtraction inSizing:CAFFEINE 85 4.1 Introduction andProblemFormulation . . . . . . . . . . . . 85 4.2 Background: GPandSymbolicRegression . . . . . . . . . . 90 viii Contents 4.3 CAFFEINECanonical FormFunctions . . . . . . . . . . . . 94 4.4 CAFFEINESearchAlgorithm . . . . . . . . . . . . . . . . . 96 4.5 CAFFEINEResults . . . . . . . . . . . . . . . . . . . . . . 102 4.6 ScalingUpCAFFEINE:Algorithm . . . . . . . . . . . . . . 113 4.7 ScalingUpCAFFEINE:Results . . . . . . . . . . . . . . . . 117 4.8 Application: Behaviorial Modeling . . . . . . . . . . . . . . 121 4.9 Application: Process-Variable Robustness Modeling . . . . . 125 4.10 Application: Design-Variable Robustness Modeling . . . . . . 138 4.11 Application: AutomatedSizing . . . . . . . . . . . . . . . . 139 4.12 Application: AnalyticalPerformanceTradeoffs . . . . . . . . 139 4.13 Sensitivity ToSearchAlgorithm . . . . . . . . . . . . . . . . 139 4.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5. CircuitTopologySynthesis:Background 143 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2 Topology-Centric Flows . . . . . . . . . . . . . . . . . . . . 145 5.3 Reconciling System-LevelDesign . . . . . . . . . . . . . . . 153 5.4 Requirements foraTopologySelection/Design Tool . . . . . 156 5.5 Open-Ended SynthesisandtheAnalogProblemDomain . . . 157 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6. TrustworthyTopologySynthesis:MOJITOSearchSpace 169 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2 SearchSpaceFramework . . . . . . . . . . . . . . . . . . . . 173 6.3 AHighlySearchable OpAmpLibrary . . . . . . . . . . . . . 180 6.4 Operating-Point DrivenFormulation . . . . . . . . . . . . . . 181 6.5 WorkedExample . . . . . . . . . . . . . . . . . . . . . . . . 182 6.6 SizeofSearchSpace . . . . . . . . . . . . . . . . . . . . . . 186 6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7. TrustworthyTopologySynthesis:MOJITOAlgorithm 191 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.2 High-LevelAlgorithm . . . . . . . . . . . . . . . . . . . . . 193 7.3 SearchOperators . . . . . . . . . . . . . . . . . . . . . . . . 196 7.4 HandlingMultipleObjectives . . . . . . . . . . . . . . . . . 199 7.5 Generation ofInitialIndividuals . . . . . . . . . . . . . . . . 202 7.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 207 7.7 Experiment: HitTargetTopologies? . . . . . . . . . . . . . . 208 7.8 Experiment: Diversity? . . . . . . . . . . . . . . . . . . . . . 209 7.9 Experiment: Human-CompetitiveResults? . . . . . . . . . . 209 Contents ix 7.10 Discussion: ComparisontoOpen-EndedStructuralSynthesis . 212 7.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 8. KnowledgeExtraction inTopologySynthesis 215 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.2 Generation ofDatabase . . . . . . . . . . . . . . . . . . . . . 218 8.3 Extraction ofSpecs-To-Topology DecisionTree . . . . . . . . 219 8.4 GlobalNonlinear SensitivityAnalysis . . . . . . . . . . . . . 223 8.5 Extraction ofAnalytical PerformanceTradeoffs . . . . . . . . 227 8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 9. Variation-AwareTopologySynthesis&KnowledgeExtraction 231 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9.2 ProblemSpecification . . . . . . . . . . . . . . . . . . . . . 231 9.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.4 TowardsaSolution . . . . . . . . . . . . . . . . . . . . . . . 234 9.5 ProposedApproach: MOJITO-R . . . . . . . . . . . . . . . . 234 9.6 MOJITO-RExperimental Validation . . . . . . . . . . . . . . 237 9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10. NovelVariation-AwareTopologySynthesis 247 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 10.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 10.3 MOJITO-NAlgorithm andResults . . . . . . . . . . . . . . 249 10.4 ISCLEsAlgorithmAndResults . . . . . . . . . . . . . . . . 253 10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 11. Conclusion 267 11.1 GeneralContributions . . . . . . . . . . . . . . . . . . . . . 267 11.2 SpecificContributions . . . . . . . . . . . . . . . . . . . . . 267 11.3 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . 270 11.4 FinalRemarks . . . . . . . . . . . . . . . . . . . . . . . . . 275 References 277 Index 301
Description: