ebook img

Variation-Aware Analog Structural Synthesis PDF

327 Pages·2009·6.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Variation-Aware Analog Structural Synthesis

Variation-Aware Analog Structural Synthesis ANALOGCIRCUITSANDSIGNALPROCESSINGSERIES ConsultingEditor:MohammedIsmail.OhioStateUniversity Forothertitlespublishedinthisseries,goto www.springer.com/series/7381 Trent McConaghy (cid:129) Pieter Palmers (cid:129) Peng Gao Michiel Steyaert (cid:129) Georges Gielen Variation-Aware Analog Structural Synthesis A Computational Intelligence Approach 123 Dr.TrentMcConaghy Prof.MichielSteyaert SolidoDesignAutomation,Inc. KatholiekeUniversiteitLeuven 102-116ResearchDrive DepartmentofElectricalEngineering SaskatoonSKS7N3R3 (ESAT) Canada KasteelparkArenberg10 [email protected] 3001Leuven Belgium [email protected] Dr.PieterPalmers MephistoDesignAutomation NV(MDA) Prof.GeorgesGielen Romeinsestraat18 KatholiekeUniversiteitLeuven 3001Heverlee DepartmentofElectrotechnicalEngineering Belgium Div.Microelectronics&Sensors(MICAS) KasteelparkArenberg10 3001Leuven PengGao Belgium KatholiekeUniversiteitLeuven [email protected] DepartmentofElectricalEngineering (ESAT) KasteelparkArenberg10 3001Leuven Belgium ISSN ISBN978-90-481-2905-8 e-ISBN978-90-481-2906-5 DOI10.1007/978-90-481-2906-5 SpringerDordrechtHeidelbergLondonNewYork LibraryofCongressControlNumber:2009927593 (cid:2)c SpringerScience+BusinessMediaB.V.2009 Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Summary of Contents “This page left intentionally blank.” Contents Preface xi AcronymsandNotation xv 1. Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Background andContributions toAnalogCAD . . . . . . . . 4 1.3 Background andContributions toAI . . . . . . . . . . . . . . 17 1.4 AnalogCADIsaFruitflyforAI . . . . . . . . . . . . . . . . 24 1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2. Variation-AwareSizing:Background 27 2.1 Introduction andProblemFormulation . . . . . . . . . . . . 27 2.2 ReviewofYieldOptimization Approaches . . . . . . . . . . 32 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3. GloballyReliable,Variation-AwareSizing:SANGRIA 47 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Foundations: Model-Building Optimization (MBO) . . . . . . 48 3.3 Foundations: Stochastic GradientBoosting . . . . . . . . . . 53 3.4 Foundations: Homotopy . . . . . . . . . . . . . . . . . . . . 59 3.5 SANGRIAAlgorithm . . . . . . . . . . . . . . . . . . . . . 59 3.6 SANGRIAExperimentalResults . . . . . . . . . . . . . . . 70 3.7 OnScalingtoLargerCircuits . . . . . . . . . . . . . . . . . 82 3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4. KnowledgeExtraction inSizing:CAFFEINE 85 4.1 Introduction andProblemFormulation . . . . . . . . . . . . 85 4.2 Background: GPandSymbolicRegression . . . . . . . . . . 90 viii Contents 4.3 CAFFEINECanonical FormFunctions . . . . . . . . . . . . 94 4.4 CAFFEINESearchAlgorithm . . . . . . . . . . . . . . . . . 96 4.5 CAFFEINEResults . . . . . . . . . . . . . . . . . . . . . . 102 4.6 ScalingUpCAFFEINE:Algorithm . . . . . . . . . . . . . . 113 4.7 ScalingUpCAFFEINE:Results . . . . . . . . . . . . . . . . 117 4.8 Application: Behaviorial Modeling . . . . . . . . . . . . . . 121 4.9 Application: Process-Variable Robustness Modeling . . . . . 125 4.10 Application: Design-Variable Robustness Modeling . . . . . . 138 4.11 Application: AutomatedSizing . . . . . . . . . . . . . . . . 139 4.12 Application: AnalyticalPerformanceTradeoffs . . . . . . . . 139 4.13 Sensitivity ToSearchAlgorithm . . . . . . . . . . . . . . . . 139 4.14 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5. CircuitTopologySynthesis:Background 143 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.2 Topology-Centric Flows . . . . . . . . . . . . . . . . . . . . 145 5.3 Reconciling System-LevelDesign . . . . . . . . . . . . . . . 153 5.4 Requirements foraTopologySelection/Design Tool . . . . . 156 5.5 Open-Ended SynthesisandtheAnalogProblemDomain . . . 157 5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6. TrustworthyTopologySynthesis:MOJITOSearchSpace 169 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2 SearchSpaceFramework . . . . . . . . . . . . . . . . . . . . 173 6.3 AHighlySearchable OpAmpLibrary . . . . . . . . . . . . . 180 6.4 Operating-Point DrivenFormulation . . . . . . . . . . . . . . 181 6.5 WorkedExample . . . . . . . . . . . . . . . . . . . . . . . . 182 6.6 SizeofSearchSpace . . . . . . . . . . . . . . . . . . . . . . 186 6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 7. TrustworthyTopologySynthesis:MOJITOAlgorithm 191 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 7.2 High-LevelAlgorithm . . . . . . . . . . . . . . . . . . . . . 193 7.3 SearchOperators . . . . . . . . . . . . . . . . . . . . . . . . 196 7.4 HandlingMultipleObjectives . . . . . . . . . . . . . . . . . 199 7.5 Generation ofInitialIndividuals . . . . . . . . . . . . . . . . 202 7.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 207 7.7 Experiment: HitTargetTopologies? . . . . . . . . . . . . . . 208 7.8 Experiment: Diversity? . . . . . . . . . . . . . . . . . . . . . 209 7.9 Experiment: Human-CompetitiveResults? . . . . . . . . . . 209 Contents ix 7.10 Discussion: ComparisontoOpen-EndedStructuralSynthesis . 212 7.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 8. KnowledgeExtraction inTopologySynthesis 215 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.2 Generation ofDatabase . . . . . . . . . . . . . . . . . . . . . 218 8.3 Extraction ofSpecs-To-Topology DecisionTree . . . . . . . . 219 8.4 GlobalNonlinear SensitivityAnalysis . . . . . . . . . . . . . 223 8.5 Extraction ofAnalytical PerformanceTradeoffs . . . . . . . . 227 8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 9. Variation-AwareTopologySynthesis&KnowledgeExtraction 231 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 9.2 ProblemSpecification . . . . . . . . . . . . . . . . . . . . . 231 9.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.4 TowardsaSolution . . . . . . . . . . . . . . . . . . . . . . . 234 9.5 ProposedApproach: MOJITO-R . . . . . . . . . . . . . . . . 234 9.6 MOJITO-RExperimental Validation . . . . . . . . . . . . . . 237 9.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 10. NovelVariation-AwareTopologySynthesis 247 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 10.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 10.3 MOJITO-NAlgorithm andResults . . . . . . . . . . . . . . 249 10.4 ISCLEsAlgorithmAndResults . . . . . . . . . . . . . . . . 253 10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 11. Conclusion 267 11.1 GeneralContributions . . . . . . . . . . . . . . . . . . . . . 267 11.2 SpecificContributions . . . . . . . . . . . . . . . . . . . . . 267 11.3 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . 270 11.4 FinalRemarks . . . . . . . . . . . . . . . . . . . . . . . . . 275 References 277 Index 301

Description:
Variation-Aware Analog Structural Synthesis describes computational intelligence-based tools for robust design of analog circuits. It starts with global variation-aware sizing and knowledge extraction, and progressively extends to variation-aware topology design. The computational intelligence techn
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.