ebook img

UW Airplane Design Program PDF

40 Pages·2012·5.65 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview UW Airplane Design Program

AIAA Paper 2012-0845 From Blank Slate to Flight Ready New Small Research UAVs in Twenty Weeks - Undergraduate Airplane Design at the University of Washington Eli Livne and Chester P. Nelson Department of Aeronautics and Astronautics University of Washington, Seattle, WA, 98195-2400 Presented at the AIAA Aerospace Sciences Meeting Nashville, TN January 9th-12th, 2012 1 From Blank Slate to Flight Ready New Small Research UAVs in Twenty Weeks - Undergraduate Airplane Design at the University of Washington EliLivne*andChesterP.Nelson** Departmentof AeronauticsandAstronautics Universityof Washington,Seattle, WA,98195-2400 Abstract The capstone airplane design course at the Universityof Washington, two academic quarters long, has evolved in recent years to cover the airplane design experience from market and needs studies through conceptual design, preliminary design, and detail design, and up to the construction, ground testing, and flight testing of complex research-type small UAVs. Significant engineering resources are devoted to this effort including substantial CAD, CFD-based aerodynamics, NASTRAN-based structural analysis, as well as performance, and stability and control simulations.WindtunneltestsofcommercialqualitymodelsattheUniversityofWashington’sKirstenwindtunnel are carried out, plus structural static and modal tests, airframe / propulsion system integration tests, together with systems and system integration testing. An emphasis is placed on test / simulation correlation assessment and the developmentinstudentsoftheappreciationofalternativenumerical/analyticmodelingmethods,theirstrengthsand limitations, advantages and disadvantages. The course emphasizes team work, communication skills, leadership, initiative,andinnovation.Itrunswithtightbudgetandscheduleconstraintswhichthestudentsmustmeet.Eachyear a new design challenge is pursued leading to new and unique research UAVs. The program leverages the University’s own wind tunnel labs, local flight test locations, and the availability of experienced mentors. SignificantsupportfromtheBoeingCompanyandfromAeronauticalTestingService,Inc.(Arlington,Washington), allows the students access to, and interaction with, world class experts in the various areas airplane design has to cover. Introduction Howto developeffectiveairplane designeducationprograms inboththeundergraduateandgraduate curriculaisa challenge all academic aeronautical / aerospace engineering programs face. The multidisciplinary nature of aerospace engineering, with the many required courses that must cover the key disciplines involved, leaves little room in the aerospace engineering curriculum for long sequences of inter-related airplane design courses required for introducing students to airplane design in a thorough way. Such sequences should begin with reviews, from an appliedperspective,ofwhatstudentshadcoveredearlieraswellasthefundamentalsofgeneraldesignandairplane design, and they should end, desirably, with the completion of detailed designs and construction of new vehicles. Even though aerospace engineering programs cover the fundamentals in aerodynamics, structures, propulsion, control,as well as airplane performance and flight mechanics, undergraduate students often reach their senior year without enough applied knowledge and experience in these disciplines and without the capacity for disciplinary integrationandmultidisciplinaryperspective. Inadditiontothetheoreticalandpracticaltechnicalissuesinvolvedit hasbeenlongrecognizedthatairplanedesigneducationattheundergraduatelevelistoprepareengineering * Professor,[email protected] **AffiliateAssociateProfessorandBoeingTechnicalFellow 2 Studentstransitiontoandenterprofessionallifeinthe“realworld”. Thismeansdevelopingexperiencewithand appreciationforinnovation,communicationsandteamwork,alongwiththeimportanceofmarketneeds, environmentalandsocialconsiderations,and,finally,projectmanagementanddecisionmakinginthefaceofreal- worldanalyticaluncertaintyandexperimentallimitations,andoperatingwithinbudgetandscheduleconstraints. Overthecourseofover15yearstheUniversityofWashingtoninSeattlehasbeendevelopinganundergraduate airplaneprogramthataimsatmeetingthechallengeslistedabove.Thestateoftheprograminitsearlystageswas reportedinRef.1,whichalsocoveredinitsbibliographygeneraldevelopmentsinandapproachestoairplanedesign educationtotheendofthe1990s.References2-6hereareimportantarticlesdiscussingairplanedesigneducation andreflectingawaveofinterestinthesubjectinthe1990s.References8-14representperspectivesandrecent nationalandinternationaldevelopmentinairplanedesigneducation.ThepresentpaperdescribestheUniversityof Washington’sprogramatitspresentstage.Asithasbecomeoneofthemostambitiousinternationally,itishoped thatsomeofthelessonslearnedandexperiencegainedmaybeofinterestandhelptoothersstrugglingtodevelop stateoftheartundergraduateairplanedesignprograms. EducationalGoals&Approach TheundergraduateairplanedesignprogramattheUniversityofWashingtonisaimedatandisstructuredfor meetingthefollowinggoals. Atthesenior(capstone)level: a) Integrateallthatstudentshavecoveredintheconstituentdisciplinesintoacoherentbodyofknowledgethat allowsstudentstoapplydisciplinaryknow-howtotheairplanedesigntaskandtoappreciatetheinter-connected natureofthemultidisciplinaryinteractionsandconsiderationsinvolved. b)Buildengineeringexperienceand“engineeringfeel”byusingahierarchyofanalytical/computationalmodeling toolsineachofthecontributingdisciplines,andinsistingonboththeconstructionofphysicalmodelsandon significantexperimentalworkthroughouttheproject.Thisallowsassessmentofstrengthandlimitationsofvarious modelingapproaches,weighingtradeoffsbetweenmathmodelgeneration&analysisexecutionspeeds,andthe accuracyofnumericalsimulationsasmeasuredbycorrelationwithexperiments. c) Useindustrystandardlevelofnumericalsimulationandtesting,but,simultaneously,insistonusingsimple“back oftheenvelope”andhandbooktypeestimatestoassessorderofmagnitudeofdesignchangeeffectsandtodetect possiblemodelinginputerrorswhenresultsofhighlevelsimulationsaremuchdifferentinorderofmagnitudethan backoftheenvelopeestimates.Examples:Usesimplebeamandplateequationstovalidateorderofmagnitudeof detailedfiniteelementresults,usecomponentdragbuild-uphandcalculationmethodstocomparewithfullNavier- StokesCFDsimulations,oruseDATCOMandNACAreporttypeapproximationsalongsidepanelcodeandCFD codepredictionofstabilityderivatives.Inthisvein,allowstudentstobuildexperiencewithausefulhierarchyof mathmodelingtechniqueslinkedtothestagesoftheevolutionofthedesignandtotimeandbudgetconstraints. d) Providesignificanthands-onexperience:fromplanning,designing,andexecutingtestsofcomponentsand subsystemsthroughcompleteconstruction,systemsintegration,andground&flighttestsofcomplexsmallUAVs. IncorporatetheuseofprojectmanagementtoolsandbasicSystemsEngineeringprinciplesthroughouttheproject. ToquoteLeCorbusier(Ref.15):“Teachingisonlypossibleintheverycentreofacraft.Arithmeticandhandwriting canbetaughtinschools. Butaninventionoriginatesonlyintheworkshop.Thedooroftheworkshopopensupon life.Thepracticalapplicationofcreatedthingsproducesanimmediateverdictastotheirworth.” e) Providesignificantsystemsintegrationexperiencecoveringallaspectsofsystemsengineeringfromrequirements andcomponentselectiontointegrationandpackagingdesign,implementation,iron-birdtesting,andfinaltestingon 3 thecompletedUAV.Systemsintegrationshouldcoveravionicsaswellasavionicsintegrationwiththeairframe,its structure,dynamics,aerodynamics,andcontrol. e) Createadesignanddevelopmentenvironmentrepresentativeofsuchenvironmentsinindustryandgovernment agenciesandleadtostudenttransitionfromtheindividual,structured,andmicro-managedworldofthehighschool andcollegestudenttotheworldofteamwork,collaboration,decisionmakinginthefaceofuncertainty,budget,and scheduleconstraints.Encourageandguidethedevelopmentofmanagementandleadershipskills. f) Nurtureinnovationandcontributiontotheprofessionbypresentingthestudentseachyearwithanewdesign challenge,andbythedesign,construction,andtestingofsmallresearchUAVsthatareuniqueandthatallowwind tunnelandflighttestingoftechnologiesthataretopicsofcurrentinterestandrelevancetoindustryandNASAfor futureaircraftdesigns. Produce,attheendofeachdesignproject,qualitycomputationalandtestdataofpotential researchvaluetofuturethesisprojects,governmentagenciesandtheaerospaceindustry. Atthefreshmantojuniorlevels: g) Includeanapplicationdesign-orientedelementinallaerospaceengineeringdisciplinarycourses.Thishastobe carefullyplannedandbalancedtoaugmentandnothurtthebuildingofdepthandcoveringthefundamentalsinthe disciplinarycourses. h) EncouragestudentstoparticipateinAIAAdesign,build,fly(DBF)competitionsandgainexperienceviasimple radio-controlmodeldesignanddevelopment.Suchearlyexperienceisveryvaluableeventhoughtheengineering analysisandtestinginvolvedandtheconfigurationscreatedcanbequitelimitedindepth,scope,andcomplexity. i)Introducestudentstoleadingexpertsfromindustryviaseminarseriesandinvitedclasstalks,andencourage expert-studentmentoringandconsultinghelp. Briefpresentationsofrecentcapstonedesignprojectsinthefollowingsectionswillbeusedtohighlightthekey elementsoftheUniversityofWashington’scapstonedesigncourse,describeitsscope,andsharewiththereader lessonsfromthedevelopmentinanundergraduateengineeringenvironmentofsomeveryinterestingUAVs. UniversityofWashingtonCapstoneAirplaneDesignProjects2006-2011 ThevarietyofresearchUAVsdesigned,built,andflownbystudentsintheairplanecapstonedesigncoursesover thelast6yearsareshowninFigure1.Thechallengeforthe2006classwastodesignandbuildascaledsupersonic businessjetconfigurationUAVtohelpinvestigatecriticallow-speedflyingqualitiesandfieldperformance characteristicsofveryslenderconfigurations.In2007theclasswastaskedwiththeconversionofaNASAF16-XL toalowsonicboomresearchplatformaircraft,withfocus,again,ontheviabilityoftheresultinglow-speedflight characteristicswithsuchadrasticmodification.TheinterestinthemodifiedF16-XLasalowsonic-boomresearch vehiclewasdrivenin2005-2006 byNASAandindustry’spursuitoflow-costflightvehiclewithsupersoniccruise capabilitytomeetresearchneedsinthisarea. In2008thefocusofthedesigncourseshiftedtosubsonicairplanes andthechallengetothestudentswastodesign,build,andflyaUAVrepresentingasubsonicregionaljetconcept configuredforlownoisebyusingairframesurfacestolargelyshieldengineinletandexhaustnoisefromground observers.The2006-2008UAVsusedelectricductedfan(EDF)propulsorstosimulateturbofanengines.Thedesign challengesin2009and2010focusedondevelopingturbojetpropelledUAVsforresearchregardingthesubsonic handlingqualitiesandpropulsion-airframeintegrationissuesoffuturesupersonicpassengerjetsconfiguredfor engine-airframenoiseshielding(similartoconceptsinNASA’sFundamentalAeronauticsProgram “N+2/N+3” aircrafttechnologystudies).Returningtosubsoniccommercialflight,the2011designprojectfocusedonveryhigh aspectratiofuturesubsoniccommercialairlinersusingstrut-bracedortruss-bracedwings.Theresultingscaleddown UAVwasagainpropelledbyelectricductedfanstosimulateveryhighbypassratiogearedturbofan(GTF)engines. 4 This2011UAVwasconstructedwithanaeroelasticallyscaledflexiblewingandcanserveasatestbedforfollow- onaeroelasticflighttestsofalternativewing/strutandwing/trussdesigns. AllUniversityofWashingtonUAVsofthelastfewyearsflewsuccessfullyfromtheNavy’sCoupevilleOLF air striponWhidbey,Island,WA.The2007UAVdidsufferaloss-of-controlcrashduetoinstabilitiesathighanglesof attackbutwasnotheavilydamaged. Thisincidentofferedthestudentteamsomecruciallessonsaboutthe importanceofchecklistsandcarefulCGlocationtrackingduringflighttestsofpotentiallyunstableconfigurations. Figure1:UniversityofWashingtoncapstoneairplanedesignUAVs2006-2011(note:thedifferentpicturesarenot tothesamescale). The2006UniversityofWashingtonCapstoneDesignProject Initially,adiscussionofthe2006capstoneprojectwillprovideanoverviewofthetypicalclass. Thedesign challengetothestudentsofthe2006capstoneairplanedesignclasswastodevelopaconceptual12seat,Mach1.6, 4000NMsupersonicbusinessjet(SSBJ)design,havingaveryslendergeneralarrangementrepresentativeoflow sonicboomdesignrequirements.Thefinenessratiowasspecifiedtobeappropriateforagroundlevelboom overpressureof0.35psforaboutan85%sonicboomreductionrelativetoConcorde. ThefullscaleresultingSSBJ designconcepthadthentobescaleddowndynamically,andthestudentswerechallengedtodesign,build,andflight testalowspeedUAVforstudyingitshandlingqualitiesandflightcharacteristicsattakeoff,approach,andlanding conditions.FollowinglessonsfromthedevelopmentofHSCTandothersupersonicexamplesstudentsspenta considerableamountoftimestudyingthestabilityandcontrollabilityofalternativewing/controlsurfaceplanforms 5 usingahierarchyofaerodynamicsimulationtechniquesfromacommerciallinearpanelcodetononlinearNavier- StokesCFDsimulations(Fig.2). Figure2:PanelcodeandSTAR-CCM+Navier-StokesCFDsimulationsofthe2006SSBJdesign. Afinalbaselineconfigurationwasdown-selectedoutofthematrixofalternativesandwasfurtherdevelopedto convergethevehiclesizing,definethepreliminaryoutermoldline(OML)aerodynamiccontours,propulsionand structuralarrangement,estimatedmassproperties,andmajorsystemsandinteriorfeatures.Basedonthisfullscale configurationconcept,adynamicallyscaledUAVwasdesigned,includingstructurallayout,selectionofmaterials basedonavailabledataanddedicatedcoupontests,systemsneedsdefinition,andtheselectionof commercially adaptablepropulsion,landinggear,controls,andallcommunicationandflighttestinstrumentationsystems.Awind tunnelmodelwasbuiltbyAeronauticalTestingService,Inc.(ATS),includingpartsforalargenumberofplanform andcontrolsurfacevariations,andwindtunneltestswerecarriedoutattheUniversityofWashington’sKirsten12ft x8ftlowspeedwindtunnel. Suchtestsarecrucialforthelow-speed/highangleofattackaerodynamicevaluation ofsupersonicconfigurations,wherevortexsheddingandvortexbreakdownmayplayasignificantroleandcanbe hardtocaptureaprioriusingCFD.Similarly,testsofkeyUAVstructuralcomponentsareusuallycarriedouteach year(staticallyanddynamically)tovalidatefiniteelementstructuralmodels. Figure3:A2006modelofasupersoniccruiseconfigurationinstalledattheUniversityofWashington’s12’x8’low speedKirstenWindTunnel(left)withChinaClayflowvisualizationpatternsatahighangleofattack(right). WiththeconclusionofthewindtunnelteststhefinalUAVconfigurationwasfrozenandUAVdetaildesigncould proceed,followedbyconstruction,systemsintegration,systemstests,groundtests,andfirstflightofthevehicle. 6 Figure3showsthewindtunnelmodelinoneofitsconfigurationsattheKirstenWindTunneltogetherwithaChina Clayflowvisualizationpatternrepresentingaparticularangleofattackandtunneldynamicpressure.Studentsinthe capstoneairplanedesigncoursesingeneralspendaconsiderableamountoftimeworkingwiththewindtunnel modelinthetunnelduringtestsanddevelopinggreaterinsightsintotheaerodynamicissuesinvolved.Theyare requiredtocorrelatemeasuredwindtunnelresultswithCFDandhandbookpredictionswhichusuallyresultsin improvementstotheconfiguration,improvementstotheCFDsolutions,orboth. CFDhasalsobeenhelpfulin understandingconfiguration-specificwindtunnelsupportinterferenceandtunnelwalleffects. Duringthewindtunneltestsofthe2006configurations622runswerecarriedoutover11shifts.Variationsofthe testedconfigurationsincludedthreeoutboardwingplanforms,twocanardplanformsinfourlocations,twostabilizer sizesattwoheights,outboardwinddihedralvariations,droopedleadingedgeandtrailingedgecontrolsurfaces, forebodychines,twoverticaltailchordsandruddersattwolongitudinallocations.Thetestsalsocoveredground effects,andthrusteffects(withanEDFpowerednacelle)incompleteangleofattackandside-slipanglesweeps. Figure4:ACADdefinition(Unigraphics)and FEMAP/NASTRANmodelsof the2006UAV. AUnigraphicsCADdefinitionofthe2006UAVandarear¾-viewimageofitsFEMAP/NASTRANmodelare presentedinFigure4,whilepicturesshowingtheconstructionoftheUAVareshowninFigure5.Theoutershellof theairframeismadeofKevlarcloth/Epoxylayups.Thewingribs,spars,bodykeels,andbodyframesareofcarbon fiber/EpoxyandDivinycell-coresandwichconstruction.Thenosegearmountisastudent-designedmachined aluminumstructureandmostotherfittingsandfastenersaremetal.Thelargersizeandhigherdesignairspeedsof theUWcapstoneUAVsprovidesexperiencewithmoderncompositeconstructionsimilartothatoffull-scale aircrafttoamuchgreaterextentthanispracticalonthemodest,lowercostradiocontrolledfoamandbalsawood modelsusedinDBFcompetitionsorindesigncoursesthatspliteachclassintomultipleDBF-likeprojects. Studentsmustchoosetheirmaterialsandstructuralarrangementforfabricationandassemblyconsiderationsaswell asstrength,stiffness,andlightweight.Classroomstructurestheory,load-paths,stressconcentrations,andfastener edgemargins,andsystemsaccessibilitytakeontangibleimportancefortheUAVelementofthecourse---lessons thatarenoteasytoteacheffectivelyin“paperstudyonly”typedesigncourses. Akeyairframedesigndecisioniswhetheritisbettertodesignacomponentwithhighdamagetolerance(butusually moredifficultfabricationorhigherweight)versusdesigningforeasierreparability(orreplacement). Priorto2009, Kevlar/EpoxywasextensivelyusedinUniversityofWashingtonUAVstohelpminimizedamagetotheairframein caseofacrash(especiallywhenpitch-up-sensitiveaerodynamicallynonlinearconfigurationswerebeing investigated).Withgrowingconfidenceintheprogram’scapabilitytodesignandflycomplexsmallUAVs successfullytheKevlaroutershelldesignphilosophywasreplacedbylighterweightoptimizedGlass/Epoxyskins, withbothGraphiteandKevlarstillusedforinternalstructurewherebeneficial. 7 AsFigure5shows,theUniversityofWashington’sUAVsarebuiltcompletelybythestudentsusingwetlayupinto femalemouldsmachinedfromtoolingfoambyATSbasedonthestudents’UAVCADmodel,orusingmalemoulds builtdirectlybythestudents.NCwater-jetcutmetaltemplatesareusedasguidestofabricatingsomesub- componentssuchaspre-contoureddull-depthfoamcoresforglass-skinnedtailsurfaces.Thehands-onconstruction experiencesupportedbycoupontests,structuraltestsofcomponents,andstructuraltestsofthecompletevehicle offerthestudentsinsightandend-to-endprojectexperienceregardingairframedesign,compositeconstruction,math modelingtechniquesandtheirusesandlimitations. Figure5:Kevlar/EpoxyandGraphite/EpoxyConstructionoftheUniversityofWashington’s2006UAV. Figure5alsoshowsthe120mmsizedelectricductedfanusedtopropelthe2006UAV.Whiletheconfiguration selectedanddevelopedwasa3-engineairplane,onlyonelarge14-15lbfthrustEDFwasusedontheUAVscenter nacelleforpropulsion.Windtunneltestsincludedpoweredtestswiththecenterengineoperatinginthewindtunnel andthetwowingnacelleinletsdomed-over.Motorhighertemperaturesthanexpectedduringoperationwere reducedbythestudentteamusingasetofcoolingfinsquicklydesigned,built,attachedtothemotor,andtestedin thewindtunnel. Theas-built2006UAVis9.5ftlong,4.5ftinspan.Itweighs30lbsandhasathrusttoweightratioof0.5.Itswing referenceareais7.06ft2anditswingloadingis4.25psf.Itisa6.76%scaledmodelofthefullconfiguration. 8 Figure6:The2006UniversityofWashington’sslenderSSBJconfigurationresearchUAV AnX-PlanesimulationmodelandtheactualUAVinflightareshowninFigure7. X-Planeisacommercially availabledesktopPCbasedflightsimulatorthathasbeenusedeffectivelyinthecapstoneairplanedesigncoursefor flightstabilityandcontrol(S&C)instructionandrapidevaluationoftheconfigurationalongitspathof development.Usesofthissoftwarehaveexpandedasthesimulationpackagehasbecomemorecapableinlater versions,includingforpre-flighttestrehearsaloftheUAVsoperation.Pilotedsimulatoruseisaugmentedlaterin theprojectbyMatlab/SimulinksimulationsdrivenbyCFDandwindtunnelbasedaerodynamicdata. Figure8showsthenominalclassschedulewhichtargetsthecompletionofaflight-readyUAVatthe20weekpoint. WhileeveryeffortismadetotestflytheUAVbefore“finalsweek”,thecompletedUAVroll-outdate,weather,test facilityavailability,andotheruncontrollablefactorscandelayUAVfirstflightdatesbeyondthefinalweek(atno gradepenaltytothestudents). Initialtestsofthe2006UAVidentifiedsomeneededsystemsmodificationsbut unfortunatelyoccurredtoolateintheacademicyeartoallowforadditionaltestoutingsduringthecourse.Needed modificationsweresubsequentlycarriedoutandtheUAVwasfinallysuccessfullydemonstratedin2008. Figure7:AnX-Planesimulationmodelofthe2006UAVandtheactualUAVinflight. 9 Mar Mar May May May May Jun # ListofActivties StartDurStartDurDone 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Weeks- Setupteamsand getmissionreq. • 1 1 1 1 1 100% BasicA/CDesign Training • 2 1 3 1 3 33% ConstructionSkill Training 3 2 11 2 11 0% NoiseTraining 4 2 8 2 8 0% CFD/StarCCM Training 5 3 4 3 4 0% CADTraining 6 4 5 4 5 0% Planform Integratedinto StarCCM 7 6 3 6 3 0% Propulsion Familiarization 8 6 5 6 5 0% NoiseTesting 9 8 8 8 8 0% FinalExterior DesignSet 10 9 1 9 1 0% PreliminaryDesign Review 11 9 1 9 1 0% FinalCADToATS 12 10 1 10 1 0% InternalDesign Process 13 10 5 10 5 0% PropulsionDesign andConstruction 14 10 5 10 5 0% FinalConstruction 15 13 6 13 6 0% WindTunnel Testing 16 13 2 13 2 0% PropulsionReady toIntegrate 17 15 1 15 1 0% FlightTesting 18 19 1 19 1 0% FlightswithData Recording 19 20 2 20 2 0% DataReduction andAnalysis 20 22 2 22 2 0% Presentation Preparation 21 23 1 23 1 0% Figure8:Atypicalplannedscheduleforthecapstonedesigncourse(afewactivitiesareomittedforbrevity). StructureandScheduleoftheCapstoneAirplaneDesignCourse Withthe2006projectinmindasanexample,wecanfurtherconsiderthestructureandscheduleofthecapstone courseasithasevolvedtothepresentform.AttheUniversityofWashingtonstudentsarriveatthecapstoneairplane designcourseatthebeginningofthewinterquarteroftheirsenioryear.Thecoursespanstenacademicweeksofthe winterquarterfollowedbytenacademicweeksofthespringquarter,fromthebeginningofJanuarytoMidJune(24 calendar-weekselapsedtime). Thestudentsbringwiththem,usually,adiversemixofpriorexperiencesinthekey disciplinesaffectingairplanedesign,thedesignprocessitself,andtheconstruction,instrumentation,andflyingof smallUAVs.SomewouldhavesomepriorR/Cmodeldesignexperiencethroughparticipationinearlieryearsin 10

Description:
University's own wind tunnel labs, local flight test locations, and the . 4000 NM supersonic business jet (SSBJ) design, having a very slender general
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.