UUnniivveerrssiittyy ooff NNeeww HHaammppsshhiirree UUnniivveerrssiittyy ooff NNeeww HHaammppsshhiirree SScchhoollaarrss'' RReeppoossiittoorryy Doctoral Dissertations Student Scholarship Spring 2015 PPoossee DDeetteeccttiioonn aanndd CCoonnttrrooll ooff UUnnmmaannnneedd UUnnddeerrwwaatteerr VVeehhiicclleess ((UUUUVVss)) UUttiilliizziinngg aann OOppttiiccaall DDeetteeccttoorr AArrrraayy Firat Eren University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation RReeccoommmmeennddeedd CCiittaattiioonn Eren, Firat, "Pose Detection and Control of Unmanned Underwater Vehicles (UUVs) Utilizing an Optical Detector Array" (2015). Doctoral Dissertations. 2193. https://scholars.unh.edu/dissertation/2193 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. POSE DETECTION AND CONTROL OF UNMANNED UNDERWATER VEHICLES (UUVs) UTILIZING AN OPTICAL DETECTOR ARRAY BY FIRAT EREN B.S. in Mechatronics Engineering, Sabanci University, Turkey, 2008 M.S. in Mechanical Engineering, University of New Hampshire, USA, 2011 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering May, 2015 ALL RIGHTS RESERVED '2015 Firat Eren This dissertation has been examined and approved in partial fulfillment of the require- ments for the degree of Doctor of Philosophy in Mechanical Engineering by: Dissertation Co-director, Dr. May-Win Thein Associate Professor of Mechanical and Ocean Engineering Dissertation Co-director, Dr. Shachak Pe’eri ResearchAssociateProfessorintheCenterforCoastalandOcean Mapping Dr. Barbaros Celikkol Professor of Mechanical and Ocean Engineering Dr. Yuri Rzhanov ResearchProfessorintheCenterforCoastalandOceanMapping Dr. M. Robinson Swift Professor of Mechanical and Ocean Engineering On 04/17/2015 Original approval signatures are on file with the University of New Hampshire Graduate School. DEDICATION Dedicated to my parents, Ayhan Eren and Abdullah Eren iv ACKNOWLEDGEMENTS I would like to thank Dr. Barbaros Celikkol for introducing me to the world of Ocean Engineering which enabled me to complete my Ph.D. During the course of my 7 years at UNH, he had been an excellent mentor and a great friend, always showing his support inside and outside the university, expecting nothing in return but my success. He was a role model for me and I feel privileged to learn from him. I will never be able to repay him my gratitude in my lifetime. Thanks to Dr. May-Win Thein for creating a research environment which helped me to become an independent researcher. I appreciate her support and generosity during my entire study. I also enjoyed our conference trips to Taipei, Keyport, Hampton Roads and Orlando. I am grateful to Dr. Shachak Pe’eri for guiding me throughout the research and his contributions on my professional and personal development. It was a great pleasure for me to work with him and be a part of the same team. I learned a lot from him and I am looking forward to learning from him even more. Dr. Yuri Rzhanov was always there when I got stuck on the research. I enjoyed our discussions on the detector array simulator. He expanded my horizons by looking at things from a different point of view. Many thanks to Dr. Robinson Swift for his time in evaluating the dissertation. I would also like to thank to Dr. Martin Renken for the technical discussions which improved the quality of the research. Paul Lavoie contributed greatly on the design and machining of the waterproof acrylic fixtures He went above and beyond to help me carry out my research and he was very patient v with me when I had questions. Matt Birkebak and Tim Brown worked long late hours with me in Chase Ocean Engi- neering Lab during the experimental stage of the research. It was also a pleasure for me to be the grad student adviser of their Harbor Security senior design team. I also had the pleasure of being the grad student adviser of UNH Remotely Operated Vehicle (ROV) teams from 2011-2015. I also would like to thank to each member of the ROV teams for the past 4 years. Thanks to Tom Fuller and Jesse Mailhot for their contributions on the prototype data acquisition system for the detector array. The materials and supplies used in this research were funded by Naval Engineering Ed- ucation Consortium (NEEC) and Naval Sea Systems Command (NAVSEA). I acknowledge the funding sources from UNH Graduate School Dissertation Fellowship (2014-2015), the LINK Foundation Fellowship for Ocean Engineering and Instrumentation (2013-2014), UNH SummerTeachingAssistantFellowship(2012), LeslieS.HubbardMarineEndowmenttosup- port Marine Research Development/Equipment (2012). I also acknowledge UNH Mechanical Engineering Department for supporting me through Teaching Assistant appointments. Finally, I would like to thank to my family who was always there to support me. They helped me to get through the turbulence of living abroad. vi TABLE OF CONTENTS DEDICATION iv ACKNOWLEDGEMENTS v LIST OF TABLES xi LIST OF FIGURES xii ABSTRACT xvii 1 INTRODUCTION 1 1.1 Unmanned Underwater Vehicle Formation Control . . . . . . . . . . . . . . . 1 1.2 Unmanned Underwater Vehicle Inter-Communication . . . . . . . . . . . . . 3 1.3 Research Scope and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3.2 Potential Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 UNMANNEDUNDERWATERVEHICLEMODELING,CONTROLAND STABILITY 8 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 UUV Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Euler Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 UUV Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.1 Newton-Euler Formulation . . . . . . . . . . . . . . . . . . . . . . . . 12 vii 2.4 Rigid-Body Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4.1 Translational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.4.2 Rotational Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.3 6-DOF Rigid-Body Equations of Motion . . . . . . . . . . . . . . . . 18 2.5 Hydrodynamic Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . 19 2.5.1 Added Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.5.2 Hydrodynamic Damping . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.5.3 Restoring Forces and Moments . . . . . . . . . . . . . . . . . . . . . 25 2.6 Unmanned Underwater Vehicle Control and Stability . . . . . . . . . . . . . 26 2.6.1 Proportional-Integral-Derivative (PID) Control . . . . . . . . . . . . 26 2.6.2 Sliding Mode Control (SMC) . . . . . . . . . . . . . . . . . . . . . . 29 3 CHARACTERIZATIONOFOPTICALCOMMUNICATIONINALEADER- FOLLOWER UUV FORMATION 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1 Beam pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.2 Inverse Square Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.3 Beer-Lambert law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Experimental Test Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4 Optical Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5 Optical Characterization Discussion and Conclusions . . . . . . . . . . . . . 44 4 OPTICALDETECTORARRAYDESIGNFORNAVIGATIONALFEED- BACK BETWEEN UUVs 46 4.1 Optical Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.1 Environmental Considerations . . . . . . . . . . . . . . . . . . . . . . 48 4.1.2 Hardware Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 51 viii 4.2 The Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 The Simulator Reference Frames . . . . . . . . . . . . . . . . . . . . 53 4.2.2 Array Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 Radiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.1 Simulator Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3.2 Detector Array Comparison . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.3 Experimental Confirmation . . . . . . . . . . . . . . . . . . . . . . . 60 4.4 Discussion of Detector Array Design and Numerical Simulator . . . . . . . . 62 5 POSE DETECTION AND CONTROL ALGORITHMS FOR DYNAMIC POSITIONING OF UUVs VIA AN OPTICAL SENSOR FEEDBACK SYSTEM 65 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2 Pose Detection Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.2.1 Phase Correlation and log-polar transform . . . . . . . . . . . . . . . 66 5.2.2 Spectral Angle Mapper (SAM). . . . . . . . . . . . . . . . . . . . . . 69 5.2.3 Calculation of image moment invariants . . . . . . . . . . . . . . . . 70 5.3 UUV Modeling and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.4 Positioning Control Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.4.1 Static-Dynamic System . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.2 Dynamic-Dynamic System . . . . . . . . . . . . . . . . . . . . . . . . 80 5.5 Discussion of Analytical Pose Detection and Positioning Control . . . . . . . 82 6 EXPERIMENTALPOSEDETECTIONANDPOSITIONINGCONTROL 85 6.1 Docking Station Maneuvers . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.2 Detection Array Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 ix
Description: