ebook img

Utilization of industrial waste heat for the cultivation and harvesting of microalgae by Corey Alfred PDF

165 Pages·2017·6.08 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Utilization of industrial waste heat for the cultivation and harvesting of microalgae by Corey Alfred

Utilization of industrial waste heat for the cultivation and harvesting of microalgae by Corey Alfred Laamanen A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (PhD) in Natural Resources Engineering The Faculty of Graduate Studies Laurentian University Sudbury, Ontario, Canada © Corey Laamanen, 2017 THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE Laurentian Université/Université Laurentienne Faculty of Graduate Studies/Faculté des études supérieures Title of Thesis Titre de la thèse Utilization of industrial waste heat for the cultivation and harvesting of microalgae Name of Candidate Nom du candidat Laamanen, Corey Alfred Degree Diplôme Doctor of Philosophy Department/Program Date of Defence Département/Programme PhD Natural Resources Engineering Date de la soutenance March 17, 2017 APPROVED/APPROUVÉ Thesis Examiners/Examinateurs de thèse: Dr. JA Scott (Supervisor/Directeur(trice) de thèse) Dr. Gregory Ross (Committee member/Membre du comité) Dr. Helen Shang (Committee member/Membre du comité) Approved for the Faculty of Graduate Studies Dr. Markus Timusk Approuvé pour la Faculté des études supérieures (Committee member/Membre du comité) Dr. David Lesbarrères Monsieur David Lesbarrères Dr. Baoqiang Liao Dean, Faculty of Graduate Studies (External Examiner/Examinateur externe) Doyen, Faculté des études supérieures Dr. Tom Kovala (Internal Examiner/Examinateur interne) ACCESSIBILITY CLAUSE AND PERMISSION TO USE I, Corey Alfred Laamanen, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that this copy is being made available in this form by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner. ii Abstract Microalgae sourced lipids that can be transesterified into biodiesel are a promising source of biofuels that can be produced while mitigating industrial carbon dioxide (CO ) in off- 2 gasses. There are many advantages to microalgae compared to other bio-feedstocks, including their rapid growth rate, their ability to accumulate significant amounts of lipid, and the possibility of year-round production. However, there are significant limitations to achieving wide spread and economic microalgae mass cultivation and two of these are addressed in this research program. Microalgae cultivation is currently generally limited to climatic zones where temperatures remain above 15°C, which effectively restricts mass cultivation to tropical or sub-tropical regions thereby eliminating the use of a number of worldwide industrial CO sources. However, many of these sources also produce significant amounts of waste 2 heat. The capture and repurposing of waste heat to maintain culture temperature and provide an alterative method for harvesting was explored. A dynamic model was developed to determine the potential of waste streams from a nickel smelter to maintain year-round growth in a cold climate. From this model, it was determined that there is more than enough heat to maintain cultivation temperatures even when the ambient temperature drops well below freezing. Harvesting of microalgae prior to lipid extraction is, with current approaches, often cited as an area where costs need to be significantly reduced. As a wholly novel approach, the iii capture of this waste heat was also explored for the use as a pretreatment for harvesting by flotation. It was determined to be highly effective and crucially avoids the addition and costs of chemical coagulants, which contaminate and restrict the use of the remaining biomass after lipid extraction. Keywords Microalgae, Waste heat, Off-gas, Biodiesel, Cold climates, Harvesting, Flotation iv Acknowledgments First and foremost, I want to express my deepest gratitude to my supervisor, mentor and friend, Dr. Ashley Scott. Without him none of this would have been possible, and he has taught me so much. In fact, there is only one person in the world I owe this to more – my mother. To her, I owe the world. Thank you mom – for always being there for me, for being a role model, and for helping me with my math homework for all those years. On the same note, I would like to thank my brother – for being the best big brother anyone could imagine. I would also like to thank Dr. Helen Shang, Dr. Greg Ross and Dr. Markus Timusk for their insight as my thesis committee. Also this project would not have been possible without the support of Sudbury Integrated Nickel Operations, the Natural Sciences and Engineering Research Council of Canada, Mitacs, and AIS plc. Last but not least, I thank the lab group, all of you – past and present. You have made this experience so enjoyable and have helped me grow as a researcher and a person. v Table of Contents Abstract(.....................................................................................................................................(iii! Keywords(...........................................................................................................................................(iv! Acknowledgments(...................................................................................................................(v! List(of(Figures(........................................................................................................................(viii! List(of(Tables(.............................................................................................................................(x! Nomenclature(.........................................................................................................................(xi! List(of(Publications(..............................................................................................................(xiv! Chapter(1(...................................................................................................................................(1! Introduction(........................................................................................................................................(1! 1.1!Background!...............................................................................................................................................!1! 1.2!Thesis!Objective!......................................................................................................................................!4! Chapter(2(...................................................................................................................................(5! A(model(for(utilizing(industrial(offGgas(to(support(microalgae(cultivation(for( biodiesel(in(cold(climates(...............................................................................................................(5! Abstract!..............................................................................................................................................................!6! 2.1!Introduction!..............................................................................................................................................!7! 2.2!Process!development!..........................................................................................................................!11! 2.3!Model!development!.............................................................................................................................!13! 2.4!Simulation!Results!................................................................................................................................!22! 2.5!Conclusion!...............................................................................................................................................!29! 2.6!Nomenclature!.........................................................................................................................................!30! Chapter(3(.................................................................................................................................(32! Smelter(offGgas(waste(heat(and(carbon(dioxide(sequestration(to(promote( production(of(biodiesel(................................................................................................................(32! Abstract!............................................................................................................................................................!33! 3.1!Introduction!............................................................................................................................................!34! 3.2!Waste!heat!in!nickel!smelter!offMgas!............................................................................................!38! 3.3!Heating!microalgae!ponds!using!waste!offMgas!heat!.............................................................!41! 3.4!Model!development!.............................................................................................................................!42! 3.5!Pond!sectioning!.....................................................................................................................................!45! 3.6!Heat!transfer!coefficient!for!pond!heat!exchanger!................................................................!46! 3.7!Pond!pumping!requirements!..........................................................................................................!48! 3.8!Roaster!heat!exchanger!......................................................................................................................!50! 3.9!Simulation!results!.................................................................................................................................!52! 3.10!Conclusion!.............................................................................................................................................!60! 3.11!Nomenclature!......................................................................................................................................!61! ( ( vi Chapter(4(.................................................................................................................................(63! Flotation(harvesting(of(microalgae(..........................................................................................(63! Abstract!............................................................................................................................................................!64! 4.1!Introduction!............................................................................................................................................!65! 4.2!Microalgae!harvesting!........................................................................................................................!67! 4.3!Flotation!....................................................................................................................................................!72! 4.4!Coagulants!...............................................................................................................................................!76! 4.5!Types!of!flotation!..................................................................................................................................!82! 4.6!Operational!Parameters!....................................................................................................................!90! 4.7!Economics!................................................................................................................................................!99! 4.8!Conclusions!..........................................................................................................................................!100! Chapter(5(..............................................................................................................................(102! HeatGaided(flocculation(for(flotation(harvesting(of(microalgae(..................................(102! Abstract!.........................................................................................................................................................!103! 5.1!Introduction!.........................................................................................................................................!104! 5.2!Materials!and!Methods!....................................................................................................................!106! 5.3!Results!and!discussion!....................................................................................................................!110! 5.4!Conclusion!............................................................................................................................................!119! Chapter(6(..............................................................................................................................(120! Development(of(heatGaided(flocculation(for(flotation(harvesting(microalgae(.......(120! Abstract!.........................................................................................................................................................!121! 6.1!Introduction!.........................................................................................................................................!122! 6.2!Materials!and!Methods!....................................................................................................................!123! 6.3!Results!and!discussion!....................................................................................................................!126! 6.4!Conclusion!............................................................................................................................................!133! Conclusions(..........................................................................................................................(135! Conclusion(.....................................................................................................................................(135! Future(Work(.................................................................................................................................(136! Bibliography(........................................................................................................................(138! vii List of Figures Figure(2.1:!Schematic!of!a!smelter!offMgas!treatment!(adapted!from!Shang!et!al.,! 2007)!...............................................................................................................................................................!9! Figure(2.2:!Schematic!of!a!smelter!coupled!microalgae!production!facility!................!12! Figure(2.3:(Annual!temperature!profile!for!example!smelter!sites!.................................!23! Figure(2.4:(Annual!solar!radiation!profile!for!example!smelter!sites!.............................!24! Figure(2.5:(Impact!on!required!energy!from!the!roaster!offMgas!per!250!m3!tank! from!removing!either!the!insulation!or!roof!covering!from!the!tanks!whilst! maintaining!water!temperature!at!15°C!in!Sudbury!...............................................................!26! Figure(2.6:!Impact!on!required!energy!from!the!roaster!offMgas!per!250!m3!tank! from!removing!either!the!insulation!or!roof!covering!from!the!tanks!whilst! maintaining!water!temperature!at!30°C!in!Sudbury!...............................................................!27! Figure(3.1:(Climatic!data!for!Sudbury,!ON,!Canada,!showing!average!monthly! temperatures!(black)!and!solar!insolation!(grey).!!The!dashed!lines!represent!the! minimum!of!the!respective!measurements,!15˚C!and!11!W/m2!(Barbosa,!Janssen,! Ham,!Tramper,!&!Wijffels,!2003),!respectively.!.........................................................................!37! Figure(3.2:(Schematic!of!a!smelter!coupled!microalgae!production!facility!(adapted! from!Laamanen!et!al.,!2014)!..............................................................................................................!40! Figure(3.3:(Proposed!roaster!offMgas!cooling!heat!exchanger.!..........................................!41! Figure(3.4:(Sectioning!of!pond!for!heat!exchanger!spacing!determination.!................!42! Figure(3.5:(Energy!requirements!to!maintain!30°C!for!sections!of!the!pond!(n!=!5).!! Dashed!line!represents!the!energy!requirement!for!the!end!sections!and!the!solid! line!the!energy!requirement!for!the!middle!sections.!............................................................!56! Figure(4.1:(Flow!sheet!of!algae!production!(TSS!=!total!suspended!solids)!(adapted! from!Mata!et!al.!(2010)).!......................................................................................................................!66! Figure(5.1:(Laboratory!flotation!column!design!...................................................................!107! Figure(5.2:(Recovery!(bars)!and!concentration!factor!(solid!squares)!of! Scenedesmus)dimorphus!(UTEX!#1237)!as!a!function!of!heating!temperature.!The! initial!microalgae!concentration!was!0.13!g/L!and!the!error!bars!represent!the! standard!error!of!the!mean!(n!=!3).!.............................................................................................!111! viii Figure(5.3:((A)!Scenedesmus)dimorphus!(UTEX!#1237)!before!and!(B)!after!heating! to!95°C.!Clumping!may!be!attributed!to!cell!lysing,!for!which!mass!loss!in!the! heating!stage!was!measured!(C).!Error!bars!represent!the!standard!error!of!the! mean!(n!=!3).!..........................................................................................................................................!113! Figure(5.4:(Recovered!biomass!(Scenedesmus)dimorphus!(UTEX!#1237))!as!a! function!of!postMheating!cooling!temperature.!Error!bars!represent!the!standard! error!of!the!mean!(n!=!3).!.................................................................................................................!114! Figure(5.5:(Recovery!(bars)!and!concentration!factor!(solid!diamonds)!as!a!function! of!microalgae!strain!(initial!concentration!=!0.20!g/L),!at!a!temperature!of!85°C.!SD! is!Scenedesmus)dimorphus!(UTEX!#1237),!and!the!wild!strains!were!WS1! (Chlorococcum!sp.),!WS2!(Coccomyxa)sp.),!WS3!and!WS4!(Scenedesmus)sp.),!and! WS5!and!WS6!(Chlamydomonas!sp.),!Error!bars!represent!the!standard!error!of!the! mean!(n!=!3).!..........................................................................................................................................!115! Figure(5.6:!Total!lipid!content!throughout!the!separation!process!of!Scenedesmus) dimorphus!(UTEX!#1237).!Error!bars!represent!the!standard!error!of!the!mean!(n!=! 3).!................................................................................................................................................................!117! Figure(6.1:!Laboratory!flotation!column!design!...................................................................!125! Figure(6.2:(Recovery!(bars)!and!concentration!factor!(diamonds)!as!a!function!of! algae!biomass!concentration!(1x!=!0.545!g/L),!at!a!temperature!of!85°C.!Error!bars! represent!the!standard!error!of!the!mean!(n!=!3).!................................................................!128! Figure(6.3:(Recovery!(bars)!and!concentration!factor!(diamonds)!as!a!function!of! pH!alteration!(Initial!concentration!=!0.12!g/L).!Error!bars!represent!the!standard! error!of!the!mean!(n!=!3).!.................................................................................................................!129! Figure(6.4:(Recovery!(bars)!and!concentration!factor!(diamonds)!as!a!function!of! combined!pH!alteration!and!heating!(Initial!concentration!=!0.12!g/L).!Error!bars! represent!the!standard!error!of!the!mean!(n!=!3).!................................................................!130! ix List of Tables Table(2.1:(Worldwide!smelting!operations!(*!Platinum!group!metals)!........................!11! Table(2.2:(Parameters!used!in!the!model!...................................................................................!22! Table(2.3:(Indirect!heating!requirements!to!maintain!a!250!m3!tank!at!15˚C!or!30˚C! (empty!cells!represent!no!need!to!supply!indirect!heat)!......................................................!28! Table(3.1:!Model!parameters.!..........................................................................................................!53! Table(3.2:(OffMgas!and!energy!requirements!for!microalgae!ponds!maintained!at! 30°C.!..............................................................................................................................................................!54! Table(3.3:(Comparison!of!different!plastic!piping!materials,!with!an!inlet! temperature!of!70°C!and!an!exit!temperature!of!40°C!(PVC!=!polyvinyl!chloride,!PP! =!polypropylene,!PEL!=!low!density!polyethylene)!.................................................................!57! Table(3.4:(Experimental!results!based!on!inlet!temperature!and!pipe!size.!...............!58! Table(4.1:!Comparison!of!algae!separation!techniques!........................................................!71! Table(4.2:!Results!from!algae!flotation!for!water!treatment!..............................................!74! Table(4.3:!Results!from!algae!flotation!for!biofuels!...............................................................!91! Table(5.1:!Lipid!composition!of!unheated!and!heated!Scenedesmus!dimorphus! (UTEX!#1237),!average!and!the!standard!error!of!the!mean!(n!=!3).!...........................!118! Table(6.1:!Media!concentrations!before!and!after!heating!(a)!with!microalgae! (Scenedesmus!dimorphus)!and!(b)!Bold’s!Basal!media!alone.!........................................!132! x

Description:
Faculty of Graduate Studies/Faculté des études supérieures. Title of Thesis. Titre de la Figure(2.5:(Impact!on!required!energy!from!the!roaster!
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.