ebook img

Using the Sun to estimate Earth-like planets detection capabilities. III. Impact of spots and plages on astrometric detection PDF

0.61 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Using the Sun to estimate Earth-like planets detection capabilities. III. Impact of spots and plages on astrometric detection

Astronomy&Astrophysicsmanuscriptno.amlagrange˙astroph (cid:13)c ESO2011 January14,2011 LettertotheEditor Using the Sun to estimate Earth-like planets detection capabilities. (cid:63) III. Impact of spots and plages on astrometric detection A.-M.Lagrange1,N.Meunier1,M.Desort1,andF.Malbet1 UJF-Grenoble1/CNRS-INSU,InstitutdePlantologieetdAstrophysiquedeGrenoble(IPAG)UMR5274,Grenoble,F-38041France ReceivedDecember,20,2010/AcceptedJanuary,11,2011 1 ABSTRACT 1 0 Aims.Stellaractivityisapotentialimportantlimitationtothedetectionoflowmassextrasolarplanetswithindirectmethods(RV, 2 photometry,astrometry).Inpreviouspapers,usingtheSunasaproxy,weinvestigatedtheimpactofstellaractivity(spots,plages, convection)onthedetectabilityofanEarth-massplanetinthehabitablezone(HZ)ofsolar-typestarswithRVtechniques.Weextend n herethedetectabilitystudytothecaseofastrometry. a J Methods.WeusedthesunspotandplagespropertiesrecordedoveronesolarcycletoinfertheastrometricvariationsthataSun-like starseenedge-on,10pcaway,wouldexhibit,ifcoveredbysuchspots/brightstructures.Wecomparethesignaltotheoneexpected 3 fromtheastrometricwobble(0.3µas)ofsuchastarsurroundedbyaoneEarth-massplanetintheHZ.Wealsobrieflyinvestigate 1 higherlevelsofactivity. Results. Theactivity-inducedastrometricsignalalongtheequatorialplanehasanamplitudeoftyp.lessthan0.2µas(rms=0.07µas ] R ),smallerthantheoneexpectedfromanEarth-massplanetat1AU.Hence,forthislevelofactivity,thedetectabilityisgovernedby theinstrumentalprecisionratherthantheactivity.WeshowthatforinstanceaoneEarth-massplanetat1AUwouldbedetectedwith S amonthlyvisitduringlessthan5yearsandaninstrumentalprecisionof0.8µas.Alevelofactivity5timeshigherwouldstillallow . h suchadetectionwithaprecisionof0.35µas.Weconcludethatastrometryisanattractiveapproachtosearchforsuchplanetsaround p solartypestarswithmostlevelsofstellaractivity. - o Keywords. (Stars:)planetarysystems-Stars:variable-Sun:activity-(Sun:)Sunspots-Astrometry. r t s a 1. Introduction: metric contribution of plages and spots should not prevent the [ RVdetectionofEarth-massplanetsintheHZ.Thisisnolonger Stellaractivityisnowrecognizedasapotentiallystronglimita- 1 truewhenconvectionistakenintoaccount. tionfortheindirectdetectionofplanets.Indeed,spotsandbright v Here, we complete the previous work by estimating the as- structures(plages,network)producebrightnessinhomogeneities 2 trometricsignalproducedbythesamestructuresoverthesame 1 atthestellarsurfacethataffectthephotometric,astrometricand solarcycle,andwecompareittotheastrometricsignalinduced 5 radial velocity (RV) signals. The RV signal is also affected by byanEarth-massplanetlocatedat1AUfromtheSun.Wealso 2 theinhibitionofconvectionintheactivearea.Theamplitudeof comparethissignaltotheRVandphotometricsignals. . the activity-related stellar noise depends on the activity pattern 1 andintensity,whichisrelatedtothestellarproperties(age,tem- 0 1 perature, etc). In the cases of young, active stars, or late-type 2. Dataandresults 1 stars, the signal may mimic that of a giant planet with periods : of the order of the star rotational period. In the case of less ac- 2.1. Data v tive, solar-type Main-Sequence stars, the noise is much lower, i The data used to compute the astrometric signals are fully de- X but can nevertheless affect the detection of terrestrial planets. scribedinpaperII.Inbrief,theyconsistofall(20873)sunspot In two recent papers, we have investigated the impact of spots r groups larger than 10 ppm of the solar hemisphere, provided a (Lagrangeetal.2010;herefaterpaperI),plagesandconvection by USAF/NOAA (http://www.ngdc.noaa.gov/stp/SOLAR/) and (Meunieretal.2010; herefater paper II) on the detectability of all (1803344) bright structures : plages (in active regions) and an Earth mass planet located in the habitable zone (HZ) of the networkstructures(brightmagneticstructuresoutsideactivere- Sun,asseenedge-onandobservedinRVorinphotometry.Todo gions) found from MDI/SOHO (Scherreretal.1995) magne- so,wetookintoaccountallspotsandplagesrecordedoverone tograms larger than 3 ppm, during the period between May 5, solarcycle.Weshowedthatprovidingaverytightandlongtem- 1996(JD2450209)andOctober7,2007(JD2454380).Thetem- poralsampling(typicallytwiceaweekovermorethan2orbital peraturesassociatedtothesetwotypesofstructureswasdeduced periods) and an RV precision in the 10 cm/s range, the photo- fromthecomparisonbetweenthevariationsoftheresultingirra- dianceandtheobservedones(FroehlichandLean1998)during Sendoffprintrequeststo:A.M.Lagrange, thisperiod.Ourtemporalsamplingisoneday,withafewgaps, e-mail:[email protected] correspondingtoacoverageof86%. (cid:63) 1 A.-M.Lagrangeetal.:UsingtheSuntoestimateEarth-likeplanetsdetectioncapabilities. 0.60 Table1.Measuredrmsfortheshifts,RVandphotometrydueto s) 0.40 thespotsandbrightstructures a μ 0.20 ( x 0.00 elta_-0.20 Period rms(∆X) rms(∆Y) rwm/os(cRoVn)v. wrmitsh(RcVon)v. rms(TSI) D-0.40 all 0.07 0.05 0.33 2.4 3.610−4 -0.60 high1 0.09 0.06 0.42 1.42 4.510−4 0 1000 2000 3000 4000 5000 high2 0.08 0.05 0.37 1.62 3.910−4 Time(JDB-2450000) low 0.02 0.01 0.08 0.44 1.210−4 0.30 Notes.Shiftsinxandyareinµas,RVareinm/s.RVandphotometry s) 0.20 rmsaretakenfromPaperII.Theentirecycle(referedas”all”)aswell a μ 0.10 as low and high activity periods are considered. The low activity pe- y ( 0.00 riodisfromJuly1,1996(JD2450266)toApril1,1997(JD2450540), _ a -0.10 andthefirstconsideredhighactivityperiod(referedas”high1”)isfrom Delt -0.20 February 1, 2000 (JD 2451576) to November 1, 2000 (JD 2451850). -0.30 Bothcorrespondtothelowandhighactivity9-monthsperiodsconsid- 0 1000 2000 3000 4000 5000 eredinPaperII.Wealsoconsideralonger(923days)activityperiod (referedas”high2”),fromJD2451577toJD2452500. Time(JDB-2450000) wouldalsotheRVandphotomtericsignals.Theastrometricsig- Fig.1. Temporal variationsof theastrometricshifts along(top) nal would also provide additional and unique information. In andperpendicularto(bottom)theequator,duetothecombina- Fig.2,weseethatthestructureattheoriginoftheobservedvari- tion of spots and bright structures. The Sun is supposed to be ationsislocatedonthesouthernhemisphereofthestar,itmov- seenedge-onandlocated10pcaway. ingfromEasttoWest,iefromthelefttorightinthelowerpanel of Fig. 2. Therefore, the astrometric signal can allow, within 0.0400 one rotation period, to determine the direction of the star ro- 0.0300 0.0200 tation axis in the plane of the sky. Note that this assumes that Delta_x (μas)--0000....0000012100000000 125.00 130.00 135.00 140.00 145.00 150.00 155.00 witnhegisksrtnerqouwucitruberysesapahvroeertoyhmogteotetorrdyoaorsrctroRooVmleemrtrtehicaasnpurrtehecmeispeinohtnos.toiAfspltshhoee,ropenearentundrebtehadats-t -0.0300 -0.0400 to isolate and monitor one single structure, so only periods of -0.0500 Time (days) lowactivitycanprovidesuchinformation(indeed,duringmore activeperiods,thecontributionsofallindividualstructuresmix 0.0040 0.0020 up). 0.0000 as) -0.0020 a_y (μ --00..00006400 2.3. sRigenlaatilosnsbetweenRV,photometricandastrometric Delt -0.0080 The astrometric variations along the equatorial plane are well -0.0100 -0.0120 correlated with the RV signal due to spots and plages (see top -0.0140 panel of Fig. 3). For a single spot, the ratio between the shift -0.0600 -0.0400 -0.0200 0.0000 0.0200 0.0400 and the RV depends on the star’s properties (v.sini) and is Delta_x (μas) almost independant from the spot properties. The correlation Fig.2.Astrometricshift(deltax)asafunctionoftime(top)and found here shows that this property remains when taking sev- excursionsofthephotocenter(bottom)duringalowactivitype- eralspots/structuresintoaccount.TheslopeoftheRVvariations riod(JD2450335toJD2450365). (in m/s) to the shifts (in µas ) is 5, compatible with the value expected from a single spot. Once convection is taken into ac- count in the RV computation, however, there is no correlation 2.2. Astrometrictemporalvariations anylongerbetweentheastrometricshiftinxandtheRVvaria- tions(seeFig.3).Thisdifferenceofbehaviourbetweenthe”no- Foreachdate,wecomputetheposition(x,y)oftheSunphoto- convection” and ”convection” cases could in principle be used centerduetothesedarkandbrightstructures,assumingitisseen toestimatethelevelofconvection,ifany,associatedtothestar. edge-on, 10 pc away. The resulting shifts along and perpendic- Finally, no correlation is found between the relative pho- ular to the equatorial plane are shown as a function of time in tometric variations and the astrometric shifts (either the ∆x or Fig.1.WereportinTable1thermsoftheshiftsduringtheentire the shift to center). This is not surprising as the photometric cycle,aswellasduringlowactivityandhighactivityperiod,and variationsdependmarginallyonthespots/plageslocations,con- thecorrespondingvaluesfortheRVandphotometricsignals. verselytotheastrometricshifts. Finally, we provide in Fig. 2 the temporal variations of the astrometric shift along the equator as well as the global excur- sionofthephotocenterduringashort30-dayperiodduringthe lowactivityphasis.Theastrometricsignal,ifmeasuredprecisely enough,allowsthedeterminationofthestarrotationperiod.So 2 A.-M.Lagrangeetal.:UsingtheSuntoestimateEarth-likeplanetsdetectioncapabilities. 0.60 20 20 00..2400 Power 10 1110 %% % Power 10 1110 %% % Delta_x (μas) -2 -1 --000...0420000 1 2 1 00 2. 5. 10.0 P2e0r.iod [d5a0y.s]100111.0 0%% %200. 500. 1000. 1 00 2. 5. 10.0 P2e0r.iod [d5a0y.s]100111.0 0%% %200. 500. 1000. -0.60 Power 5 Power 5 RV (spots+plages) (m/s) 0.60 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. Period [days] Period [days] 0.40 Fig.4. Periodogrammes of the shift along the equatorial plane Delta_x (μas) -2 -000...0220000 2 4 6 8 10 12 opinflagtnh5ee0tsSmauotnn1vtAhieUsw.,Feardnodemdogtboesp-eotrnoveabdnodtotnoscmuer:rao1u)mnloodwnedthabcaytpivpairtooynxpeiemEriaaotredtlh,y-n,modauinsrs-- -0.40 strumentalnoise;2)highactivityperiod,noinstrumentalnoise; 3) low activity period, 0.8 µas rms instrumental noise; 4) high -0.60 RV tot (m/s) activityperiod,0.8µasrmsinstrumentalnoise. Fig.3.AstrometricshiftsalongtheequatorialplaneversusRVs duetospotsandplages(top)andtospots,plagesandconvection 10 1110 %% % 10 1110 %% % (bottom).Noinstrumentalnoiseisassumedhere. Power 5 Power 5 3. Discussion 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. Period [days] Period [days] 3.1. Planetdetectioninastrometry Fig.5. Periodogrammes of the shift along the equatorial plane assumingaSun5timesmoreactivethanobserved,viewededge- We see in Fig. 1 that the activity-induced shifts are most of on and surrounded by a one Earth-mass planets at 1 AU, and the time smaller than 0.2 µas, ie smaller than the amplitude observedonceamonthapproximately,during50months.A0.35 of the shifts induced by an Earth mass planet at 1 AU (0.33 µasrmsinstrumentalnoisehasbeenaddedtothedata.Left:low µas along the equatioral plane and 0 µas perpendicular to the activityperiod;right:highactivityperiod. equator).Thesevaluesareinagreementwiththeestimationsof Makarovetal.2010.Thermsoftheequatorialshiftovertheen- tirecycleis(cid:39)5timessmallerthantheamplitudeoftheEarthsig- 5 times more active than the Sun (we assume conservatively nal,and4timessmallerduringhighactivity.Thismeansthatthe that such a star will produce shifts five times higher than the SunactivitywouldnotpreventtodetectanEarthlocatedinthe Sun) 2. This is illustrated in Fig. 5 where we show the peri- HZ,providedtheprecisionofthedataallowssuchmesurements. odogrammesoftheshiftalongtheequatorialplane(samesam- This is illustrated in Fig. 4 where we show the periodogramme plingasbefore)duringthelowandhighactivityperiods.Given of the astrometric shifts along the equatorial plane once a one Lockwoodetal.2007relationbetweentherelativephotometric Earth-mass planet has been added (no noise). In this example, variationsandtheCaH&Klinestrengthindexlog(R’HK),and weusealimitedamountofdatainsteadofthewholesetofdata, given the log(R’HK) for the Sun (between (cid:39) −4.85 and −5.0 in order to be closer to a real case. The chosen temporal sam- respectively during the high and low activity phases), this cor- plingisof1month+−5daysover50months,typicalofthestrat- responds to a log(R’HK) smaller than −4.25. Most of active egyadoptedfortheNEATinstrumentrecentlyproposedtoESA starsfallintothisregime.Indeed,amongthe385Hipparcosstars (Le´ger2010), dedicated to a systematic astrometric search for closer than 20 pc with a known R’HK, only 8 have log(R’HK) exo-EarthsintheHZofnearbystars. ≥−4.2(seeFig.6;Maldonadoetal.2010)). We then explored different instrumental noises. An exam- So far we have assumed that the angle of the planet orbit ple is given in the lower panel of Fig. 4 where we assume a (supposedly identical to the equatorial plane) is known. In the noise of 0.8 µas 1. The temporal sampling is the same as be- case of real observations though, this information will not be fore. The planet is still detectable. However, in that case, the knownaprioriandtheplanetmayorbitoutsidethestar’sequa- correlationseenintheprevioussectionbetweentheastrometric torialplane.Itappearsthateveninthepresenceofstellaractivity shiftalongtheequatorialplaneandtheRVvariationsisnotany and instrumental noise at a level of 0.35 µas per measurement, longerpresent.Thisisduetothefactthattheinstrumentalnoise the astrometric data will allow to recover this information. We islargerthantheactivity-inducednoise.Theconsequenceisthat considertheexampleofaplanetonanorbitinclinedby-60de- if we take the instrumental noise into account, for this level of greeswithrespecttotheNorth.Thestarissupposedtohaveei- activity,itwillnotbepossibletoestimatethelevelofconvection therthesameactivitylevelastheSun,or5timesthislevel.The usingtheastrometricandRVdata. astrometricshiftsaremeasuredinareferentialwhichisallowed Wefinallyexploredifferentlevelsofactivity.Wefoundthat to rotate from 0 (equatorial plane) to 360 degrees. We measure aninstrumentalprecisionsimilartothatexpectedfortheNEAT ineachcasetheshiftsprojectedonthisreferential,andtheasso- instrument for a 5 hours-long visit of a G2 star located 10 pc ciatedrmsalongeachaxisofthereferential.Weconsidereither away (0.35 µas ) will easily allow the detection even for stars 2 in practice, a level of activity five times higher will probably in- 1 thisvaluecorrespondstotheprecisionthatNEATwillprovidein1 duceshiftssmallerthan5timestheshifts,asstatistically,therewillbe hourobservation.Inpractice,eachvisitwillbelonger(up√to(cid:39)5hours) morechancesthattheeffectsofstructureslocatedonagivensideofthe toensureabetterprecision(precisionisproportionalto tobs). hemispherebebalancedbythatthoseofstructuresontheoppositeside 3 A.-M.Lagrangeetal.:UsingtheSuntoestimateEarth-likeplanetsdetectioncapabilities. Histogram of log(R'HK) for FGK stars closer than 20pc 24,4and14,respectively.Therefore,forRVtechniques,thede- 140 tection limit is set by the stellar activity (and mainly by con- 120 vectioneffects)ratherthantheinstrumentalprecision(provided precisionsof10cm/sareavailable). 100 Toprepareandaccompanyaspaceastrometricmissonded- bers 80 icatedtoEarth-massplanetdetection,anumberofpreviousRV, m u orphotometricmonitoringwouldcertainlybeveryprecious.In N 60 particular, RV measurements are very powerful to derive the 40 properties of the star’s activity. They are in fact more power- fullthanastrometryasthermsoftheactivity-inducedRVvaria- 20 tionsismuchlargerthantheinstrumentalprecision(conversely 0 toastrometry).Previouslong-termRVmonitoringcanallowto -5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 identify the presence of larger bodies in the system and char- Log(R'HK) acterizethem(notethatlowerprecisionastrometricmonitoring Fig.6. Histogram of log(R’HK) for all Hipparcos stars closer canalsodothis).Duringtheastrometricmeasurements,simulta- than20pc,withaknownR’HK. neousRVobservationswithaprecisionofabout10cm/swould providedetailedinformationontheactualactivityofthestarand willhelptheanalysisoftheastrometricdata. Acknowledgements. WeacknowledgesupportfromtheFrenchCNRS.Weare gratefultoProgrammeNationaldePlane´tologie(PNP,INSU).Wealsothank AlainLe´gerandMikeShaoforfruitfulldiscussionsontheNEATprojectandthe refereeforhispromptcomments. References Froehlich,C,&Lean,J.,1998,Geophys.Res.Letters,25,4377 Lagrange,A.-M.,Desort,M.,&Meunier,N.,2010,A&A,512,A38 Le´ger,A.,2010,privatecommunication Lockwood,G.W.,Skiff,B.A.,Henry,G.W.etal.,2007,ApJ,171,L260 Makarov,V.V.,Parker,D.,Ulrich,R.K.,2010,ApJ,717,1202 Maldonado,J.,Mart´ınez-Arna´iz,R.M.,Eiroa,C.,Montes,D.,Montesinos,B., 2010,A&A,521,A12 Meunier,N.,Desort,M.&Lagrange,A.-M.,2010,A&A,512,A39 Fig.7.Rmsoftheshiftalongthex-axisofarotatingreferential Scherrer,P.H.,Bogart,R.S.,Bush,R.I.,etal.,1995,Sol.Phys.,162,129 Traub, W., Beichman, C., Boden, A.F., et al, 2010, EAS Publications Series, asafunctionofitsrotationalangle(seetext).Inred,caseofsolar 42,191 activity. In blue, case of 5 times the solar activity. In all cases, weconsiderthattheinstrumentalnoiseis0(plainlines)or0.35 microas(dashedlines).Theverticaldashedlineshowstheangle oftheinclinationoftheplanetorbitalplane. no or 0.35 µas level instrumental noise, and either a solar-like level of activity or 5 times this level. The temporal sampling is thesameasbefore(50datapoints).WeshowinFig.7thermsas afunctionoftherotationangleofthereferential.Weseeaclear maximumatanangleequaltotheplanetinclination.Hencethe positionangleoftheplanetorbitcanberetrieved. We conclude that in most cases, stellar activity will not be the dominant factor for the planet detectability in astrome- try. The dominant factor will rather be the instrumental preci- sion. Note that if present, other larger planets will also induce noises,whicharenotconsideredinthispaper,buttheseriesof blind tests conducted to estimate the detection capabilities of Earth-like planets in multiple systems by space-borne astrom- etry(Traubetal.2010)haveshowedthatthisnoisecanbewell circumvented. 3.2. ComparisontoRVdata ThesituationisthendifferentfromtheRVdata,asthermsofthe RV due to spots and bright structures only (i.e. convection not takenintoaccount)duringresp.theentirecycle,thelowactivity period and the high activity periods are 3, 1 and 4 times larger than the amplitude of the Earth RV signal (see Table 1). When takingconvectionintoaccount,thecorrespondingratiobecome 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.