Astronomy&Astrophysicsmanuscriptno.amlagrange˙astroph (cid:13)c ESO2011 January14,2011 LettertotheEditor Using the Sun to estimate Earth-like planets detection capabilities. (cid:63) III. Impact of spots and plages on astrometric detection A.-M.Lagrange1,N.Meunier1,M.Desort1,andF.Malbet1 UJF-Grenoble1/CNRS-INSU,InstitutdePlantologieetdAstrophysiquedeGrenoble(IPAG)UMR5274,Grenoble,F-38041France ReceivedDecember,20,2010/AcceptedJanuary,11,2011 1 ABSTRACT 1 0 Aims.Stellaractivityisapotentialimportantlimitationtothedetectionoflowmassextrasolarplanetswithindirectmethods(RV, 2 photometry,astrometry).Inpreviouspapers,usingtheSunasaproxy,weinvestigatedtheimpactofstellaractivity(spots,plages, convection)onthedetectabilityofanEarth-massplanetinthehabitablezone(HZ)ofsolar-typestarswithRVtechniques.Weextend n herethedetectabilitystudytothecaseofastrometry. a J Methods.WeusedthesunspotandplagespropertiesrecordedoveronesolarcycletoinfertheastrometricvariationsthataSun-like starseenedge-on,10pcaway,wouldexhibit,ifcoveredbysuchspots/brightstructures.Wecomparethesignaltotheoneexpected 3 fromtheastrometricwobble(0.3µas)ofsuchastarsurroundedbyaoneEarth-massplanetintheHZ.Wealsobrieflyinvestigate 1 higherlevelsofactivity. Results. Theactivity-inducedastrometricsignalalongtheequatorialplanehasanamplitudeoftyp.lessthan0.2µas(rms=0.07µas ] R ),smallerthantheoneexpectedfromanEarth-massplanetat1AU.Hence,forthislevelofactivity,thedetectabilityisgovernedby theinstrumentalprecisionratherthantheactivity.WeshowthatforinstanceaoneEarth-massplanetat1AUwouldbedetectedwith S amonthlyvisitduringlessthan5yearsandaninstrumentalprecisionof0.8µas.Alevelofactivity5timeshigherwouldstillallow . h suchadetectionwithaprecisionof0.35µas.Weconcludethatastrometryisanattractiveapproachtosearchforsuchplanetsaround p solartypestarswithmostlevelsofstellaractivity. - o Keywords. (Stars:)planetarysystems-Stars:variable-Sun:activity-(Sun:)Sunspots-Astrometry. r t s a 1. Introduction: metric contribution of plages and spots should not prevent the [ RVdetectionofEarth-massplanetsintheHZ.Thisisnolonger Stellaractivityisnowrecognizedasapotentiallystronglimita- 1 truewhenconvectionistakenintoaccount. tionfortheindirectdetectionofplanets.Indeed,spotsandbright v Here, we complete the previous work by estimating the as- structures(plages,network)producebrightnessinhomogeneities 2 trometricsignalproducedbythesamestructuresoverthesame 1 atthestellarsurfacethataffectthephotometric,astrometricand solarcycle,andwecompareittotheastrometricsignalinduced 5 radial velocity (RV) signals. The RV signal is also affected by byanEarth-massplanetlocatedat1AUfromtheSun.Wealso 2 theinhibitionofconvectionintheactivearea.Theamplitudeof comparethissignaltotheRVandphotometricsignals. . the activity-related stellar noise depends on the activity pattern 1 andintensity,whichisrelatedtothestellarproperties(age,tem- 0 1 perature, etc). In the cases of young, active stars, or late-type 2. Dataandresults 1 stars, the signal may mimic that of a giant planet with periods : of the order of the star rotational period. In the case of less ac- 2.1. Data v tive, solar-type Main-Sequence stars, the noise is much lower, i The data used to compute the astrometric signals are fully de- X but can nevertheless affect the detection of terrestrial planets. scribedinpaperII.Inbrief,theyconsistofall(20873)sunspot In two recent papers, we have investigated the impact of spots r groups larger than 10 ppm of the solar hemisphere, provided a (Lagrangeetal.2010;herefaterpaperI),plagesandconvection by USAF/NOAA (http://www.ngdc.noaa.gov/stp/SOLAR/) and (Meunieretal.2010; herefater paper II) on the detectability of all (1803344) bright structures : plages (in active regions) and an Earth mass planet located in the habitable zone (HZ) of the networkstructures(brightmagneticstructuresoutsideactivere- Sun,asseenedge-onandobservedinRVorinphotometry.Todo gions) found from MDI/SOHO (Scherreretal.1995) magne- so,wetookintoaccountallspotsandplagesrecordedoverone tograms larger than 3 ppm, during the period between May 5, solarcycle.Weshowedthatprovidingaverytightandlongtem- 1996(JD2450209)andOctober7,2007(JD2454380).Thetem- poralsampling(typicallytwiceaweekovermorethan2orbital peraturesassociatedtothesetwotypesofstructureswasdeduced periods) and an RV precision in the 10 cm/s range, the photo- fromthecomparisonbetweenthevariationsoftheresultingirra- dianceandtheobservedones(FroehlichandLean1998)during Sendoffprintrequeststo:A.M.Lagrange, thisperiod.Ourtemporalsamplingisoneday,withafewgaps, e-mail:[email protected] correspondingtoacoverageof86%. (cid:63) 1 A.-M.Lagrangeetal.:UsingtheSuntoestimateEarth-likeplanetsdetectioncapabilities. 0.60 Table1.Measuredrmsfortheshifts,RVandphotometrydueto s) 0.40 thespotsandbrightstructures a μ 0.20 ( x 0.00 elta_-0.20 Period rms(∆X) rms(∆Y) rwm/os(cRoVn)v. wrmitsh(RcVon)v. rms(TSI) D-0.40 all 0.07 0.05 0.33 2.4 3.610−4 -0.60 high1 0.09 0.06 0.42 1.42 4.510−4 0 1000 2000 3000 4000 5000 high2 0.08 0.05 0.37 1.62 3.910−4 Time(JDB-2450000) low 0.02 0.01 0.08 0.44 1.210−4 0.30 Notes.Shiftsinxandyareinµas,RVareinm/s.RVandphotometry s) 0.20 rmsaretakenfromPaperII.Theentirecycle(referedas”all”)aswell a μ 0.10 as low and high activity periods are considered. The low activity pe- y ( 0.00 riodisfromJuly1,1996(JD2450266)toApril1,1997(JD2450540), _ a -0.10 andthefirstconsideredhighactivityperiod(referedas”high1”)isfrom Delt -0.20 February 1, 2000 (JD 2451576) to November 1, 2000 (JD 2451850). -0.30 Bothcorrespondtothelowandhighactivity9-monthsperiodsconsid- 0 1000 2000 3000 4000 5000 eredinPaperII.Wealsoconsideralonger(923days)activityperiod (referedas”high2”),fromJD2451577toJD2452500. Time(JDB-2450000) wouldalsotheRVandphotomtericsignals.Theastrometricsig- Fig.1. Temporal variationsof theastrometricshifts along(top) nal would also provide additional and unique information. In andperpendicularto(bottom)theequator,duetothecombina- Fig.2,weseethatthestructureattheoriginoftheobservedvari- tion of spots and bright structures. The Sun is supposed to be ationsislocatedonthesouthernhemisphereofthestar,itmov- seenedge-onandlocated10pcaway. ingfromEasttoWest,iefromthelefttorightinthelowerpanel of Fig. 2. Therefore, the astrometric signal can allow, within 0.0400 one rotation period, to determine the direction of the star ro- 0.0300 0.0200 tation axis in the plane of the sky. Note that this assumes that Delta_x (μas)--0000....0000012100000000 125.00 130.00 135.00 140.00 145.00 150.00 155.00 witnhegisksrtnerqouwucitruberysesapahvroeertoyhmogteotetorrdyoaorsrctroRooVmleemrtrtehicaasnpurrtehecmeispeinohtnos.toiAfspltshhoee,ropenearentundrebtehadats-t -0.0300 -0.0400 to isolate and monitor one single structure, so only periods of -0.0500 Time (days) lowactivitycanprovidesuchinformation(indeed,duringmore activeperiods,thecontributionsofallindividualstructuresmix 0.0040 0.0020 up). 0.0000 as) -0.0020 a_y (μ --00..00006400 2.3. sRigenlaatilosnsbetweenRV,photometricandastrometric Delt -0.0080 The astrometric variations along the equatorial plane are well -0.0100 -0.0120 correlated with the RV signal due to spots and plages (see top -0.0140 panel of Fig. 3). For a single spot, the ratio between the shift -0.0600 -0.0400 -0.0200 0.0000 0.0200 0.0400 and the RV depends on the star’s properties (v.sini) and is Delta_x (μas) almost independant from the spot properties. The correlation Fig.2.Astrometricshift(deltax)asafunctionoftime(top)and found here shows that this property remains when taking sev- excursionsofthephotocenter(bottom)duringalowactivitype- eralspots/structuresintoaccount.TheslopeoftheRVvariations riod(JD2450335toJD2450365). (in m/s) to the shifts (in µas ) is 5, compatible with the value expected from a single spot. Once convection is taken into ac- count in the RV computation, however, there is no correlation 2.2. Astrometrictemporalvariations anylongerbetweentheastrometricshiftinxandtheRVvaria- tions(seeFig.3).Thisdifferenceofbehaviourbetweenthe”no- Foreachdate,wecomputetheposition(x,y)oftheSunphoto- convection” and ”convection” cases could in principle be used centerduetothesedarkandbrightstructures,assumingitisseen toestimatethelevelofconvection,ifany,associatedtothestar. edge-on, 10 pc away. The resulting shifts along and perpendic- Finally, no correlation is found between the relative pho- ular to the equatorial plane are shown as a function of time in tometric variations and the astrometric shifts (either the ∆x or Fig.1.WereportinTable1thermsoftheshiftsduringtheentire the shift to center). This is not surprising as the photometric cycle,aswellasduringlowactivityandhighactivityperiod,and variationsdependmarginallyonthespots/plageslocations,con- thecorrespondingvaluesfortheRVandphotometricsignals. verselytotheastrometricshifts. Finally, we provide in Fig. 2 the temporal variations of the astrometric shift along the equator as well as the global excur- sionofthephotocenterduringashort30-dayperiodduringthe lowactivityphasis.Theastrometricsignal,ifmeasuredprecisely enough,allowsthedeterminationofthestarrotationperiod.So 2 A.-M.Lagrangeetal.:UsingtheSuntoestimateEarth-likeplanetsdetectioncapabilities. 0.60 20 20 00..2400 Power 10 1110 %% % Power 10 1110 %% % Delta_x (μas) -2 -1 --000...0420000 1 2 1 00 2. 5. 10.0 P2e0r.iod [d5a0y.s]100111.0 0%% %200. 500. 1000. 1 00 2. 5. 10.0 P2e0r.iod [d5a0y.s]100111.0 0%% %200. 500. 1000. -0.60 Power 5 Power 5 RV (spots+plages) (m/s) 0.60 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. Period [days] Period [days] 0.40 Fig.4. Periodogrammes of the shift along the equatorial plane Delta_x (μas) -2 -000...0220000 2 4 6 8 10 12 opinflagtnh5ee0tsSmauotnn1vtAhieUsw.,Feardnodemdogtboesp-eotrnoveabdnodtotnoscmuer:rao1u)mnloodwnedthabcaytpivpairtooynxpeiemEriaaotredtlh,y-n,modauinsrs-- -0.40 strumentalnoise;2)highactivityperiod,noinstrumentalnoise; 3) low activity period, 0.8 µas rms instrumental noise; 4) high -0.60 RV tot (m/s) activityperiod,0.8µasrmsinstrumentalnoise. Fig.3.AstrometricshiftsalongtheequatorialplaneversusRVs duetospotsandplages(top)andtospots,plagesandconvection 10 1110 %% % 10 1110 %% % (bottom).Noinstrumentalnoiseisassumedhere. Power 5 Power 5 3. Discussion 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. 0 2. 5. 10.0 20. 50. 100.0 200. 500. 1000. Period [days] Period [days] 3.1. Planetdetectioninastrometry Fig.5. Periodogrammes of the shift along the equatorial plane assumingaSun5timesmoreactivethanobserved,viewededge- We see in Fig. 1 that the activity-induced shifts are most of on and surrounded by a one Earth-mass planets at 1 AU, and the time smaller than 0.2 µas, ie smaller than the amplitude observedonceamonthapproximately,during50months.A0.35 of the shifts induced by an Earth mass planet at 1 AU (0.33 µasrmsinstrumentalnoisehasbeenaddedtothedata.Left:low µas along the equatioral plane and 0 µas perpendicular to the activityperiod;right:highactivityperiod. equator).Thesevaluesareinagreementwiththeestimationsof Makarovetal.2010.Thermsoftheequatorialshiftovertheen- tirecycleis(cid:39)5timessmallerthantheamplitudeoftheEarthsig- 5 times more active than the Sun (we assume conservatively nal,and4timessmallerduringhighactivity.Thismeansthatthe that such a star will produce shifts five times higher than the SunactivitywouldnotpreventtodetectanEarthlocatedinthe Sun) 2. This is illustrated in Fig. 5 where we show the peri- HZ,providedtheprecisionofthedataallowssuchmesurements. odogrammesoftheshiftalongtheequatorialplane(samesam- This is illustrated in Fig. 4 where we show the periodogramme plingasbefore)duringthelowandhighactivityperiods.Given of the astrometric shifts along the equatorial plane once a one Lockwoodetal.2007relationbetweentherelativephotometric Earth-mass planet has been added (no noise). In this example, variationsandtheCaH&Klinestrengthindexlog(R’HK),and weusealimitedamountofdatainsteadofthewholesetofdata, given the log(R’HK) for the Sun (between (cid:39) −4.85 and −5.0 in order to be closer to a real case. The chosen temporal sam- respectively during the high and low activity phases), this cor- plingisof1month+−5daysover50months,typicalofthestrat- responds to a log(R’HK) smaller than −4.25. Most of active egyadoptedfortheNEATinstrumentrecentlyproposedtoESA starsfallintothisregime.Indeed,amongthe385Hipparcosstars (Le´ger2010), dedicated to a systematic astrometric search for closer than 20 pc with a known R’HK, only 8 have log(R’HK) exo-EarthsintheHZofnearbystars. ≥−4.2(seeFig.6;Maldonadoetal.2010)). We then explored different instrumental noises. An exam- So far we have assumed that the angle of the planet orbit ple is given in the lower panel of Fig. 4 where we assume a (supposedly identical to the equatorial plane) is known. In the noise of 0.8 µas 1. The temporal sampling is the same as be- case of real observations though, this information will not be fore. The planet is still detectable. However, in that case, the knownaprioriandtheplanetmayorbitoutsidethestar’sequa- correlationseenintheprevioussectionbetweentheastrometric torialplane.Itappearsthateveninthepresenceofstellaractivity shiftalongtheequatorialplaneandtheRVvariationsisnotany and instrumental noise at a level of 0.35 µas per measurement, longerpresent.Thisisduetothefactthattheinstrumentalnoise the astrometric data will allow to recover this information. We islargerthantheactivity-inducednoise.Theconsequenceisthat considertheexampleofaplanetonanorbitinclinedby-60de- if we take the instrumental noise into account, for this level of greeswithrespecttotheNorth.Thestarissupposedtohaveei- activity,itwillnotbepossibletoestimatethelevelofconvection therthesameactivitylevelastheSun,or5timesthislevel.The usingtheastrometricandRVdata. astrometricshiftsaremeasuredinareferentialwhichisallowed Wefinallyexploredifferentlevelsofactivity.Wefoundthat to rotate from 0 (equatorial plane) to 360 degrees. We measure aninstrumentalprecisionsimilartothatexpectedfortheNEAT ineachcasetheshiftsprojectedonthisreferential,andtheasso- instrument for a 5 hours-long visit of a G2 star located 10 pc ciatedrmsalongeachaxisofthereferential.Weconsidereither away (0.35 µas ) will easily allow the detection even for stars 2 in practice, a level of activity five times higher will probably in- 1 thisvaluecorrespondstotheprecisionthatNEATwillprovidein1 duceshiftssmallerthan5timestheshifts,asstatistically,therewillbe hourobservation.Inpractice,eachvisitwillbelonger(up√to(cid:39)5hours) morechancesthattheeffectsofstructureslocatedonagivensideofthe toensureabetterprecision(precisionisproportionalto tobs). hemispherebebalancedbythatthoseofstructuresontheoppositeside 3 A.-M.Lagrangeetal.:UsingtheSuntoestimateEarth-likeplanetsdetectioncapabilities. Histogram of log(R'HK) for FGK stars closer than 20pc 24,4and14,respectively.Therefore,forRVtechniques,thede- 140 tection limit is set by the stellar activity (and mainly by con- 120 vectioneffects)ratherthantheinstrumentalprecision(provided precisionsof10cm/sareavailable). 100 Toprepareandaccompanyaspaceastrometricmissonded- bers 80 icatedtoEarth-massplanetdetection,anumberofpreviousRV, m u orphotometricmonitoringwouldcertainlybeveryprecious.In N 60 particular, RV measurements are very powerful to derive the 40 properties of the star’s activity. They are in fact more power- fullthanastrometryasthermsoftheactivity-inducedRVvaria- 20 tionsismuchlargerthantheinstrumentalprecision(conversely 0 toastrometry).Previouslong-termRVmonitoringcanallowto -5.4 -5.2 -5.0 -4.8 -4.6 -4.4 -4.2 -4.0 -3.8 identify the presence of larger bodies in the system and char- Log(R'HK) acterizethem(notethatlowerprecisionastrometricmonitoring Fig.6. Histogram of log(R’HK) for all Hipparcos stars closer canalsodothis).Duringtheastrometricmeasurements,simulta- than20pc,withaknownR’HK. neousRVobservationswithaprecisionofabout10cm/swould providedetailedinformationontheactualactivityofthestarand willhelptheanalysisoftheastrometricdata. Acknowledgements. WeacknowledgesupportfromtheFrenchCNRS.Weare gratefultoProgrammeNationaldePlane´tologie(PNP,INSU).Wealsothank AlainLe´gerandMikeShaoforfruitfulldiscussionsontheNEATprojectandthe refereeforhispromptcomments. References Froehlich,C,&Lean,J.,1998,Geophys.Res.Letters,25,4377 Lagrange,A.-M.,Desort,M.,&Meunier,N.,2010,A&A,512,A38 Le´ger,A.,2010,privatecommunication Lockwood,G.W.,Skiff,B.A.,Henry,G.W.etal.,2007,ApJ,171,L260 Makarov,V.V.,Parker,D.,Ulrich,R.K.,2010,ApJ,717,1202 Maldonado,J.,Mart´ınez-Arna´iz,R.M.,Eiroa,C.,Montes,D.,Montesinos,B., 2010,A&A,521,A12 Meunier,N.,Desort,M.&Lagrange,A.-M.,2010,A&A,512,A39 Fig.7.Rmsoftheshiftalongthex-axisofarotatingreferential Scherrer,P.H.,Bogart,R.S.,Bush,R.I.,etal.,1995,Sol.Phys.,162,129 Traub, W., Beichman, C., Boden, A.F., et al, 2010, EAS Publications Series, asafunctionofitsrotationalangle(seetext).Inred,caseofsolar 42,191 activity. In blue, case of 5 times the solar activity. In all cases, weconsiderthattheinstrumentalnoiseis0(plainlines)or0.35 microas(dashedlines).Theverticaldashedlineshowstheangle oftheinclinationoftheplanetorbitalplane. no or 0.35 µas level instrumental noise, and either a solar-like level of activity or 5 times this level. The temporal sampling is thesameasbefore(50datapoints).WeshowinFig.7thermsas afunctionoftherotationangleofthereferential.Weseeaclear maximumatanangleequaltotheplanetinclination.Hencethe positionangleoftheplanetorbitcanberetrieved. We conclude that in most cases, stellar activity will not be the dominant factor for the planet detectability in astrome- try. The dominant factor will rather be the instrumental preci- sion. Note that if present, other larger planets will also induce noises,whicharenotconsideredinthispaper,buttheseriesof blind tests conducted to estimate the detection capabilities of Earth-like planets in multiple systems by space-borne astrom- etry(Traubetal.2010)haveshowedthatthisnoisecanbewell circumvented. 3.2. ComparisontoRVdata ThesituationisthendifferentfromtheRVdata,asthermsofthe RV due to spots and bright structures only (i.e. convection not takenintoaccount)duringresp.theentirecycle,thelowactivity period and the high activity periods are 3, 1 and 4 times larger than the amplitude of the Earth RV signal (see Table 1). When takingconvectionintoaccount,thecorrespondingratiobecome 4