USING THE GREET MODEL TO ANALYZE ALGAE AS A FEEDSTOCK FOR BIODIESEL PRODUCTION By Christopher Tatum Approved: _____________________________ ______________________________ Tricia A. Thomas Neslihan Alp Professor of Engineering Professor of Engineering (Director of Thesis) (Committee Member) _____________________________ ______________________________ Frank Jones Jim Henry Professor of Engineering Professor of Engineering (Committee Member) (Committee Member) _____________________________ ______________________________ William H. Sutton A. Jerald Ainsworth Dean, Engineering & Computer Science Dean of the Graduate School USING THE GREET MODEL TO ANALYZE ALGAE AS A FEEDSTOCK FOR BIODIESEL PRODUCTION By Christopher Tatum A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering The University of Tennessee at Chattanooga Chattanooga, Tennessee December 2012 ii ABSTRACT There is a growing interest in renewable, carbon-neutral biofuels such as ethanol and biodiesel. A life-cycle analysis is conducted in this study to determine the viability of using algae as a feedstock for biodiesel. The method involves assessing energy use, fossil fuel use, greenhouse gas emissions, and criteria pollutant emissions using a simulation developed by Argonne National Laboratory. The energy and emissions of algae-derived biodiesel are compared to those of soybean biodiesel, corn ethanol, conventional gasoline, and low-sulfur diesel. Results show that there are sizeable greenhouse gas emission benefits attributed to the production of both types of biodiesel as compared to petroleum fuels. Energy expenditures are much larger when producing algae biodiesel than compared to the other four fuels. The alternative scenario of growing algae at a wastewater treatment plant is also evaluated and is proven to reduce fossil fuel consumption by 17%. The results suggest that producing biodiesel from algae, while not yet competitive regarding energy use, does have many benefits and is worthy of further research and development. iii TABLE OF CONTENTS LIST OF TABLES.........................................................................................................vi LIST OF FIGURES......................................................................................................vii LIST OF ABBREVIATIONS.........................................................................................ix CHAPTER I. INTRODUCTION...............................................................................................1 Why Alternative Fuels?.......................................................................................2 Types of Alternative Fuels...................................................................................3 Ethanol....................................................................................................3 Biodiesel..................................................................................................5 Algae as a Feedstock...........................................................................................6 Evaluating Algae as a Feedstock Using GREET..................................................8 II. METHODOLOGY............................................................................................10 Pathways in GREET..........................................................................................10 Petroleum...............................................................................................10 Electricity..............................................................................................10 Ethanol..................................................................................................11 Biodiesel................................................................................................12 Algae Process Description.................................................................................14 Carbon Dioxide Transportation..............................................................15 Growth and First Dewatering.................................................................16 Nutrients................................................................................................16 Second Dewatering................................................................................17 Oil Extraction........................................................................................17 Anaerobic Digestion (Recovery)............................................................18 Biogas Cleanup......................................................................................18 Soil Amendment Transportation.............................................................19 Conversion to Biodiesel.........................................................................19 Co-Product Treatment for Biofuels....................................................................20 Stochastic Simulation........................................................................................21 III. RESULTS.........................................................................................................25 iv Energy Consumption.........................................................................................25 Greenhouse Gas Emissions................................................................................31 Pollutant Emissions...........................................................................................37 IV. DISCUSSION AND CONCLUSION Wastewater Treatment Plant Scenario................................................................43 General Discussion............................................................................................46 Conclusion........................................................................................................48 REFERENCES.............................................................................................................49 APPENDIX A. SUPPLEMENTARY DATA................................................................................52 VITA............................................................................................................................58 v LIST OF TABLES A1 Total energy and fossil fuel consumption for each stage of the corn-to-ethanol process.........................................................................................................54 A2 Total energy and fossil fuel consumption for each stage of the soybean-to- biodiesel process..........................................................................................54 A3 Total energy, fossil fuel, electricity, and thermal energy consumption for each stage of the algae-to-biodiesel process.................................................55 A4 Well-to-pump (WTP) results for energy consumption and greenhouse gas and pollutant emissions. Listed as mean over standard deviation in BTU or grams/mmBTU of fuel available at the pump..................................56 A5 Well-to-wheels (WTW) results for energy consumption and greenhouse gas and pollutant emissions. Listed as mean over standard deviation in BTU or grams/mmBTU of fuel available at the pump..................................57 vi LIST OF FIGURES 1 Flow Diagram of the algae-to-biodiesel process.................................................14 2 Sample points (100) on a unit square using four sampling techniques (Subramanyan and Diwekar 2005)...............................................................23 3 The energy required to get one million units of energy of each fuel type to the pump......................................................................................................26 4 The amount of fossil fuels consumed to get one million units of energy of each fuel type to the pumps..........................................................................27 5 The total amount of fossil fuel energy consumed in a complete, well-to- wheels life-cycle analysis.............................................................................29 6 The contributions to fossil fuel consumption occurring from the various processes involved in the production of biodiesel from algae feedstock........30 7 The total amount of CO emitted while getting one million units of energy 2 of each fuel to the pumps.............................................................................31 8 The total amount of CH emitted while getting one million units of energy 4 of each fuel to the pumps.............................................................................33 9 The total amount of N O emitted while getting one million units of energy 2 of each fuel to the pumps.............................................................................34 10 The total amount of greenhouse gases emitted, in CO equivalent units, 2 while getting one million units of energy of each fuel to the pumps.............35 11 The total amount of greenhouse gases emitted, in CO equivalent units, for 2 a full well-to-wheel life-cycle analysis.........................................................36 12 The total emissions of CO, NO , and SO for the entire well-to-wheels X X life-cycle analysis........................................................................................37 13 The total emissions of VOCs, PM , and PM for the entire well-to- 10 2.5 wheels life-cycle analysis.............................................................................40 vii 14 The contributions to fossil fuel consumption occurring from the various processes involved in the production of biodiesel from algae feedstock........44 15 The amount of fossil fuels consumed to get one million units of energy of each fuel type to the pumps for the wastewater treatment plant scenarios......................................................................................................45 A1 Process flow diagram for electricity generation at a typical power plant with 35% efficiency.....................................................................................53 viii LIST OF ABBREVIATIONS AD Anaerobic digestion ANL Argonne National Laboratory BD Biodiesel BD20 Mixture of 20% biodiesel and 80% diesel by volume C Carbon CD Conventional diesel CH Methane 4 CHP Combined heat and power CO Carbon monoxide CO Carbon dioxide 2 DAP Diammonium phosphate DDGS Distillers’ dry grains and solubles DOE U.S. Department of Energy EPA U.S. Environmental Protection Agency EtOH Ethanol E10 Mixture of 10% ethanol and 90% gasoline by volume FAME Fatty acid methyl esters GHG Greenhouse gas ix GREET Greenhouse gases, Regulated Emissions, and Energy use in Transportation LSD Low sulfur diesel MTBE Methyl tertiary butyl ether N Nitrogen NAAQS National Ambient Air Quality Standards N O Nitrous oxide 2 NH Ammonia 3 NOx Nitrogen oxides NREL National Renewable Energy Laboratory O Oxygen 2 P Phosphorus PBR Photobioreactor PM Particulate matter with aerodynamic diameter of 10 micrometers or less 10 PM Particulate matter with aerodynamic diameter of 2.5 micrometers or less 2.5 RFG Reformulated gasoline RFS Renewable Fuel Standard SO Sulfur dioxide 2 SOx Sulfur oxides VOC Volatile organic compound WTP Well to pump WTW Well to wheel WWTP Wastewater treatment plant x
Description: