ebook img

Using Social Networks to Aid Homeless Shelters: Dynamic Influence Maximization under Uncertainty - An Extended Version PDF

3.5 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Using Social Networks to Aid Homeless Shelters: Dynamic Influence Maximization under Uncertainty - An Extended Version

Using Social Networks to Aid Homeless Shelters: Dynamic Influence Maximization under Uncertainty - An Extended Version Amulya Yadav, Hau Chan1, Albert Jiang1, Haifeng Xu, Eric Rice, Milind Tambe University of Southern California, Los Angeles, CA 90089 1Trinity University, San Antonio, TX 78212 {amulyaya, haifengx, ericr, tambe}@usc.edu 1{hchan, xjiang}@trinity.edu 6 ABSTRACT sexualactivity,injectiondruguse)thanothersub-populations. In 1 fact,previousstudiesshowthathomelessyouthareat10Xgreater ThispaperpresentsHEALER,asoftwareagentthatrecommends 0 risk of HIV infection than stably housed populations [5]. Thus, sequentialinterventionplansforusebyhomelessshelters,whoor- 2 anyattemptateradicatingHIVcruciallydependsonoursuccessat ganize these interventions to raise awareness about HIV among minimizingratesofHIVinfectionamonghomelessyouth. n homelessyouth. HEALER’ssequentialplans(builtusingknowl- Asaresult,manyhomelesssheltersorganizeinterventioncamps a edge of social networks of homeless youth) choose intervention J participantsstrategicallytomaximizeinfluencespread,whilerea- forhomelessyouthinordertoraiseawarenessaboutHIVpreven- tionandtreatmentpractices. Theseinterventioncampsconsistof 0 soning about uncertainties in the network. While previous work day-long educational sessions in which the participants are pro- 3 presents influence maximizing techniques to choose intervention videdwithinformationaboutHIVpreventionmeasures[20]. participants, they do not address three real-world issues: (i) they ] completelyfailtoscaleuptoreal-worldsizes;(ii)theydonothan- However,duetofinancial/manpowerconstraints,theshelterscan I onlyorganizealimitednumberofinterventioncamps. Moreover, A dledeviationsinexecutionofinterventionplans;(iii)constructing ineachcamp,theshelterscanonlymanagesmallgroupsofyouth real-worldsocialnetworksisanexpensiveprocess.HEALERhan- . (∼3-4)atatime(asemotionalandbehavioralproblemsofyouth s dlestheseissuesviafourmajorcontributions: (i)HEALERcasts c thisinfluencemaximizationproblemasaPOMDPandsolvesitus- makesmanagementofbiggergroupsdifficult). Thus,theshelters [ prefer a series of small sized camps organized sequentially [19]. inganovelplannerwhichscalesuptopreviouslyunsolvablereal- Asaresult,thesheltercannotinterveneontheentiretarget(home- 1 worldsizes;(ii)HEALERallowsshelterofficialstomodifyitsrec- lessyouth)population. Instead,ittriestomaximizethespreadof v ommendations,andupdatesitsfutureplansinadeviation-tolerant awarenessamongthetargetpopulation(viaword-of-mouthinflu- 5 manner; (iii) HEALER constructs social networks of homeless ence) using the limited resources at its disposal. To achieve this 6 youth at low cost, using a Facebook application. Finally, (iv) goal,theshelterusesthefriendshipbasedsocialnetworkofthetar- 1 we show hardness results for the problem that HEALER solves. getpopulationtostrategicallychoosetheparticipantsoftheirlim- 0 HEALERwillbedeployedintherealworldinearlySpring2016 itedinterventioncamps. Unfortunately,theshelters’jobisfurther 0 andiscurrentlyundergoingtestingatahomelessshelter. . complicatedbyalackofcompleteknowledgeaboutthesocialnet- 2 work’sstructure[17]. Somefriendshipsinthenetworkareknown CategoriesandSubjectDescriptors 0 withcertaintywhereasthereisuncertaintyaboutotherfriendships. 6 I.2.11[DistributedArtificialIntelligence]:Multiagentsystems Thus, thesheltersfaceanimportantchallenge: theyneedase- 1 quentialplantochoosetheparticipantsoftheirsequentiallyorga- : v GeneralTerms nizedinterventions. Thisplanmustaddressfourkeypoints: (i)it i mustdealwithnetworkstructureuncertainty; (ii)itneedstotake X Algorithms,HIVPrevention intoaccountnewinformationuncoveredduringtheinterventions, r whichreducestheuncertaintyinourunderstandingofthenetwork; a Keywords (iii)theplanneedstobedeviationtolerant,assometimeshomeless POMDP; Influence Maximization; Social Networks; Multi-Step youthmayrefusetobeaninterventionparticipant,therebyforcing planning thesheltertomodifyitsplan;(iv)theinterventionapproachshould address the challenge of gathering information about social net- 1. INTRODUCTION worksofhomelessyouth,whichusuallycoststhousandsofdollars andmanymonthsoftime[19]. HIV-AIDSkills2millionpeopleworldwideeveryyear[26]. In In this paper, we model the shelters’ problem by introducing USAalone,AIDSkillsaround10,000peopleperannum[2]. HIV theDynamicInfluenceMaximizationunderUncertainty(orDIME) hasanextremelyhighincidenceamonghomelessyouth,astheyare problem. Thesequentialselectionofinterventionparticipantsun- morelikelytoengageinhighHIV-riskbehaviors(e.g.,unprotected dernetworkuncertaintyinDIMEsetsitapartfromanyotherpre- vious work on influence maximization, which mostly focuses on Appearsin: Proceedingsofthe15thInternationalConferenceon singleshotchoices[1,25,10,14]. Additionally,inpreviouswork, AutonomousAgentsandMultiagentSystems(AAMAS2016),John PSINET[29],aPOMDPbasedtool,wasproposedforsolvingthis Thangarajah,KarlTuyls,StacyMarsella,CatholijnJonker(eds.), problem, but it has three limitations. First, PSINET completely May9–13,2016,Singapore. Copyright(cid:13)c 2016,InternationalFoundationforAutonomousAgentsand fails to scale up to the problem’s requirements; running slowly MultiagentSystems(www.ifaamas.org).Allrightsreserved. and out of memory. It runs very slowly for moderate-sized net- ation of such sequential influence maximization algorithms. We works,andrunsoutofmemoryasthenetworkisscaledup.Worse expectdeploymenttocommenceinearlySpring2016. still,evenonthesemoderatesizednetworks,itrunsoutofmemory when the number of participants in an intervention are increased 2. RELATEDWORK (as shown later). Second, PSINET did not explicitly allow offi- cialstomodifyitsrecommendedplansifsomeparticipantsrefuse First,wediscussworkrelatedtoinfluencemaximization. There toattendtheintervention.Third,PSINETrequiresentiresocialnet- aremanyalgorithmsforfinding‘seedsets’ofnodestomaximize worksofhomelessyouthasinput,whilehomelessshelterslackthe influence spread in networks [10, 14, 1, 25]. However, all these money/time/manpowerrequiredtogeneratetheseinputnetworks. algorithmsassumenouncertaintyinthenetworkstructureandse- In this paper, we build a new software agent, HEALER lect a single seed set. In contrast, we select several seed sets se- (HierarchicalEnsemblingbasedAgentwhichpLansforEffective quentiallyinourworktoselectinterventionparticipants.Also,our Reduction in HIV Spread), to provide an end-to-end solution to problemtakesintoaccountuncertaintyaboutthenetworkstructure theDIMEproblem. HEALERaddressesPSINET’sshortcomings andinfluencestatusofnetworknodes(i.e., whetheranodeisin- via four contributions. First, HEALER casts the DIME problem fluencedornot). Finally,unlike[10,14,1,25],weuseadifferent asaPartiallyObservableMarkovDecisionProcess(POMDP)and diffusionmodelasweexplainlater. Golovinet. al. [8]introduced solves it using HEAL (Hierarchical Ensembling Algorithm for adaptivesubmodularityanddiscussedadaptivesequentialselection pLanning),anovelPOMDPplannerwhichquicklygenerateshigh- (similartoourproblem),andtheyprovedthataGreedyalgorithm quality recommendations (of intervention participants) for home- has a (1−1/e) approximation guarantee. However, unlike our lessshelterofficials.HEALusesahierarchicalensemblingheuris- work,theyassumenouncertaintyinnetworkstructure.Also,while tic to ensure low memory utilization, thereby enabling scale up. ourproblemcanbecastintotheadaptivestochasticoptimization HEALhierarchicallysubdividesouroriginalPOMDPattwolay- frameworkof[8],ourinfluencefunctionisnotadaptivesubmodu- ers: (i)Inthetoplayer, graphpartitioningtechniquesareusedto lar(seeSection5),becauseofwhichtheirGreedyalgorithmloses dividetheoriginalPOMDPintointermediatePOMDPs;(ii)Inthe itsapproximationguarantees. secondlevel, eachoftheseintermediatePOMDPsisfurthersim- Next, we discuss literature from social work. The general ap- plifiedbysamplinguncertaintiesinnetworkstructurerepeatedlyto proachtotheseinterventionsistousePeerChangeAgents(PCA) getsampledPOMDPs;(iii)Finally,weuseaggregationtechniques (i.e.,peerswhobringaboutchangeinattitudes)toengagehomeless tocombinethesolutionstothesesimplerPOMDPs,inordertogen- youthininterventions,butmoststudiesdon’tusenetworkcharac- eratetheoverallsolutionfortheoriginalPOMDP.Oursimulations teristicstochoosethesePCAs[22].AnotableexceptionisValente show that even on small settings, HEAL achieves a 100X speed et. al. [27],whoproposedselectinginterventionparticipantswith upand70%improvementinsolutionqualityoverPSINET;andon highestdegree centrality (themost ties toother homelessyouth). largerproblemswherePSINETisunabletorunatall,HEALcon- However,previousstudies[3,29]showthatdegreecentralityper- tinuestoprovidehighqualitysolutionsquickly.Second,HEALER formspoorly,asitdoesnotaccountforpotentialoverlapsininflu- toleratesdeviationsinexecutionofinterventionplans,asitperiodi- enceoftwohighdegreecentralitynodes. callyreceivesfeedbackfromshelterofficialsaboutexecutedplans, Thefinalfieldofrelatedworkisplanningforreward/costopti- reasonsaboutanydeviationsfromitsrecommendedplans,andup- mization. We only focus on the literature on Monte-Carlo (MC) dates its plan accordingly to maximize solution quality. Third, samplingbasedonlinePOMDPsolverssincethisapproachallows HEALER quickly gathers information about the homeless youth significant scale-up [21]. The POMCP solver [23] uses Monte- socialnetwork(atlowcost)byinteractingwithyouthviaaFace- CarloUCTtreesearchinonlinePOMDPplanning. Also,Somani bookapplication. Fourth,weanalyzeseveralnoveltheoreticalas- et.al.[24]presenttheDESPOTalgorithm,thatimprovestheworst pectsoftheDIMEproblem,whichillustratesitshardness. caseperformanceofPOMCP.OurinitialexperimentswithPOMCP and DESPOT showed that they run out of memory on even our smallsizednetworks. Arecentpaper[29]introducedPSINET-W, aMCsamplingbasedonlinePOMDPplanner. Wehavediscussed PSINET’sshortcomingsinSection1andhowweremedythem.In particular,asweshowlater,HEALERscalesupwhereasPSINET failstodoso. HEALER’salgorithmicapproachalsoofferssignif- icantnoveltiesincomparisonwithPSINET(seeSection6.1). Fur- ther,arecentpaper[15]looksatanextensionofthesameproblem byconsideringthecasethatnotallnodesinthenetworkareknown (a)ComputersatHomelessShelter (b) Emergency Resource Shelf at aheadoftime(asopposedtoourworkwhereweonlyassumethat whereHEALERisdeployed theHomelessShelter some edges are not known ahead of time). However, unlike our work,theydonotconsidersequentialselectionofnodesubsets. Figure1:FacilitiesatourCollaboratingHomelessShelter 3. HEALER’SDESIGN We deploy HEALER in a real-world pilot study, in collabo- ration with a homeless shelter (name withheld for anonymity), We now explain the high-level design of HEALER. It consists which provides food and lodging to homeless youth aged 12-25. oftwomajorcomponents:(i)aFacebookapplicationforgathering Theyprovidethesefacilitiesfor∼55-60homelessyoutheveryday. informationaboutsocialnetworks;and(ii)aDIMESolver,which They also operate an on-site medical clinic where free HIV and solvestheDIMEproblem(introducedinSection5). Wefirstex- Hepatitis-C testing is provided. HEALER has been reviewed by plainHEALER’scomponentsandthenexplainHEALER’sdesign. officials at our collaborating homeless shelter and their feedback FacebookApplication:HEALERgathersinformationaboutso- hasbeenpositive.Wearecurrentlypreparingtoregister100youth cialtiesinthehomelessyouthsocialnetworkbyinteractingwith inourdeploymentofHEALERatthisshelter. Tothebestofour youthviaaFacebookapplication. WechooseFacebookforgath- knowledge, this pilot study represents the first real-world evalu- eringinformationasYounget. al. [31]showthat∼80%ofhome- UncertainNetwork: Theuncertainnetworkisadirectedgraph G = (V,E) with |V| = N nodes and |E| = M edges. The edge set E consists of two disjoint subsets of edges: E (the set c ofcertainedges,i.e.,friendshipswhichwearecertainabout)and E (thesetofuncertainedges, i.e., friendshipswhichweareun- u certainabout). Notethatuncertaintiesaboutfriendshipsexistbe- causeHEALER’sFacebookapplicationmissesoutonsomelinks betweenpeoplewhoarefriendsinreallife,butnotonFacebook. Figure2: HEALER’sDesign Tomodeltheuncertaintyaboutmissingedges, everyuncertain edge e ∈ E has an existence probability u(e) associated with u it,whichrepresentsthelikelihoodof“existence"ofthatuncertain lessyouthareactiveonFacebook. Onceafixednumberofhome- edge.Forexample,ifthereisanuncertainedge(A,B)(i.e.,weare less youth register in the Facebook application, HEALER parses unsurewhethernodeBisnodeA’sfriend),thenu(A,B) = 0.75 theFacebookcontactlistsofalltheregisteredhomelessyouthand impliesthatB isA’sfriendwitha0.75chance. Inaddition,each generatesthesocialnetworkbetweentheseyouth.HEALERaddsa edgee ∈ E (bothcertainanduncertain)hasapropagationproba- linkbetweentwopeople,ifandonlyifbothpeopleare(i)friendson bilityp(e)associatedwithit. Apropagationprobabilityof0.5on Facebook;and(ii)areregisteredinitsFacebookapplication. Un- directededge(A,B)denotesthatifnodeAisinfluenced(i.e.,has fortunately,thereisuncertaintyinthegeneratednetworkasfriend- informationaboutHIVprevention),itinfluencesnodeB(i.e.,gives shiplinksbetweenpeoplewhoareonlyfriendsinreal-life(andnot informationtonodeB)witha0.5probabilityineachsubsequent onFacebook)arenotcapturedbyHEALER. timestep(ourfullinfluencemodelisdefinedbelow).ThisgraphG Previously,homelesssheltersgatheredthissocialnetworkinfor- withallrelevantp(e)andu(e)valuesrepresentsanuncertainnet- mation via tedious face-to-face interviews with homeless youth, workandservesasaninputtotheDIMEproblem.Figure3shows a process which cost thousands of dollars and many months of anuncertainnetworkon6nodes(AtoF)and7edges.Thedashed time. HEALER’s Facebook application allows homeless shelters andsolidedgesrepresentuncertain(edgenumbers1, 4, 5and7) to quickly generate a (partial) homeless youth social network at and certain (edge numbers 2, 3 and 6) edges, respectively. Next, lowcost.ThisFacebookapplicationhasbeentestedbyourcollab- weexplaintheinfluencediffusionmodelthatweuseinHEALER. oratinghomelessshelterwithpositivefeedback. Influence Model We use a variant DIME Solver: The DIME Solver then takes the approximate oftheindependentcascademodel[30]. socialnetwork(generatedbyHEALER’sFacebookapplication)as In the standard independent cascade inputandsolvestheDIMEproblem(formallydefinedinSection5) model,allnodesthatgetinfluencedat usingournewalgorithm(explainedinSection6.1).HEALERpro- round t get a single chance to influ- videsthesolutionofthisDIMEproblemasaseriesofrecommen- ence their un-influenced neighbors at dations(ofinterventionparticipants)tohomelessshelterofficials. HEALERDesign: HEALER’sdesign(showninFigure2),be- timet+1. Iftheyfailtospreadinflu- Figure3: Uncertain ginswiththeFacebookapplicationconstructinganuncertainnet- ence in this single chance, they don’t Network spread influence to their neighbors in work(asexplainedabove).HEALERhasasense-reason-actcycle; futurerounds.Ourmodelisdifferentin whereitrepeatsthefollowingprocessforT interventions. thatweassumethatnodesgetmultiplechancestoinfluencetheir It reasons about different long-term plans to solve the DIME un-influencedneighbors. Iftheysucceedininfluencinganeighbor problem, it acts by providing DIME’s solution as a recommen- atagiventimestept(cid:48), theystopinfluencingthatneighborforall dation (of intervention participants) to homeless shelter officials. futuretimesteps.Otherwise,iftheyfailinstept(cid:48),theytrytoinflu- The officials may choose to not use HEALER’s recommendation enceagaininthenextround. Thisvariantofindependentcascade in selecting their intervention’s participants. Upon the interven- has been shown to empirically provide a better approximation to tion’scompletion,HEALERsensesfeedbackabouttheconducted realinfluencespreadthanthestandardindependentcascademodel interventionfromtheofficials. Thisfeedbackincludesnewobser- [4,30]. Further,weassumethatnodesthatgetinfluencedatacer- vationsaboutthenetwork,e.g.,uncertaintiesinsomelinksmaybe taintimestepremaininfluencedforallfuturetimesteps. Wenow resolvedasinterventionparticipantsareinterviewedbytheshelter explainhowHEALERgeneratesanuncertainsocialnetwork. officials(explainedmoreinSection5). HEALERusesthisfeed- backtoupdateandimproveitsfuturerecommendations. 4.2 HEALER’sFacebookapplication 4. NETWORKGENERATION HEALERgeneratesanuncertainnetworkby(i)usingitsFace- First,weexplainourmodelforinfluencespreadinuncertainso- bookapplicationtogenerateanetworkwithnouncertainedges;(ii) cialnetworks.Then,wedescribehowHEALERgeneratesasocial usingwellknownlinkpredictiontechniquessuchasKronEM[11] networkusingits’Facebookapplication. toinferexistenceprobabilitiesu(e)forallpossiblemissingedges that are not present in the network; (iii) deciding on a threshold 4.1 Background probability τ (in consultation with homeless shelter officials), so We represent social networks as directed graphs (consisting of thatweonlyaddamissingedgeasanuncertainedgeifitsinferred nodesanddirectededges)whereeachnoderepresentsapersonin existenceprobabilityu(e) > τ; and(iv)askinghomelessshelter thesocialnetworkandadirectededgebetweentwonodesAandB officialstoprovidep(e)estimatesfornetworkedges. (say)representsthatnodeAconsidersnodeBashis/herfriend.We Choosing τ: Rice et. al [18] show that real-world homeless assumedirected-nessofedgesassometimeshomelesssheltersas- youthnetworksarerelativelysparse.Thus,shelterofficialschoose sessthattheinfluenceinafriendshipisverymuchuni-directional; thethresholdprobabilityvalueτ suchthatthenumberofuncertain andtoaccountforuni-directionalfollowerlinksonFacebook.Oth- edgesthatgetaddedbecauseofτdoesnotmakeourinputuncertain erwisefriendshipsareencodedastwouni-directionallinks. networkoverlydense.Next,weintroducetheDIMEproblem. 5. DIMEPROBLEM Wenowprovidesomebackgroundinformationthathelpsusde- fine a precise problem statement for DIME. After that, we will showsomehardnessresultsaboutthisproblemstatement. Given the uncertain network as input, HEALER runs for T rounds(correspondingtothenumberofinterventionsorganizedby thehomelessshelter). Ineachround,HEALERchoosesK nodes (youth)asinterventionparticipants.Theseparticipantsareassumed tobeinfluencedpost-interventionwithcertainty.Uponinfluencing thechosennodes,HEALER‘observes’thetruestateoftheuncer- Figure4: Counter-exampleforTheorem5.1 tain edges (friendships) out-going from the selected nodes. This translatestoaskinginterventionparticipantsabouttheir1-hopso- cialcircles,whichiswithinthehomelessshelter’scapabilities[18]. THEOREM 5.1. Givenanuncertainnetworkwithnnodes,for Aftereachround,influencespreadsinthenetworkaccordingto any (cid:15) > 0, there is no algorithm for the DIME problem which our influence model for L time steps, before we begin the next can guarantee a n−1+(cid:15) approximation to OPTfull, the full- round. ThisLrepresentsthetimedurationinbetweentwosucces- informationsolutionvalue. siveinterventioncamps.Inbetweenrounds,HEALERdoesnotob- PROOF. We prove this statement by providing a counter- servethenodesthatgetinfluencedduringLtimesteps. HEALER exampleintheformofaspecific(groundtruth)networkforwhich onlyknowsthatexplicitlychosennodes(ourinterventionpartici- therecanexistnoalgorithmwhichcanguaranteean−1+(cid:15)approx- pantsinallpastrounds)areinfluenced. Informallythen,givenan imationtoOPT . ConsideraninputtotheDIMEproblem,an uncertainnetworkG0 = (V,E)andintegersT,K,andL(asde- uncertainnetworfkulwlithnnodeswith2∗(cid:0)n(cid:1)uncertainedgesbe- finedabove),HEALERfindsanonlinepolicyforchoosingexactly 2 tweenthennodes,i.e.,it’sacompletelyconnecteduncertainnet- KnodesforT successiverounds(interventions)whichmaximizes workconsistingofonlyuncertainedges(anexamplewithn = 3 influencespreadinthenetworkattheendofT rounds. isshowninFigure4). Letp(e) = 1andu(e) = 0.5onalledges We now provide notation for defining HEALER’s policy for- intheuncertainnetwork,i.e.,alledgeshavethesamepropagation mally. Let A = {A ⊂ V s.t.|A| = K} denote the set of K andexistenceprobability. LetK = 1,L = 1andT = 1,i.e.,we sized subsets of V, which represents the set of possible choices justselectasinglenodeinoneshot(inasingleround). thatHEALERcanmakeateverytimestept ∈ [1,T]. LetA ∈ i Further,considerastargraph(asthegroundtruthnetwork)with A∀i∈[1,T]denoteHEALER’schoiceintheithtimestep.Upon nnodessuchthatpropagationprobabilityp(e) = 1onalledges makingchoiceA , HEALER‘observes’uncertainedgesadjacent i ofthestargraph(showninFigure1). Now,anyalgorithmforthe tonodesinA ,whichupdatesitsunderstandingofthenetwork.Let i DIMEproblemwouldselectasinglenodeintheuncertainnetwork G ∀i∈[1,T]denotetheuncertainnetworkresultingfromG i i−1 uniformlyatrandomwithequalprobabilityof1/n(asinformation with observed (additional edge) information from A . Formally, i aboutallnodesissymmetrical). Inexpectation,thealgorithmwill wedefineahistoryH ∀i ∈ [1,T]oflengthiasatupleofpast i achieve an expected reward {1/n×(n)}+{1/n×(1)+...+ choices and observations H = (cid:104)G ,A ,G ,A ,..,A ,G (cid:105). i 0 1 1 2 i−1 i 1/n×(1)}=1/n×(n)+(n−1)/n×1=2−1/n.However, DenotebyH = {H s.t.k (cid:54) i}thesetofallpossiblehistories i k giventhegroundtruthnetwork,wegetOPT =n,becausewe oflengthlessthanorequaltoi.Finally,wedefineani-steppolicy full alwaysselectthestarnode. Asngoestoinfinity, wecanatbest Πi: Hi → Aasafunctionthattakesinhistoriesoflengthless achievean−1approximationtoOPT .Thus,noalgorithmcan thanorequaltoiandoutputsaKnodechoiceforthecurrenttime achievean−1+(cid:15)approximationtoOPfTull forany(cid:15)>0. step.WenowprovideanexplicitproblemstatementforDIME. full PROBLEM 1. DIMEProblemGivenasinputanuncertainnet- Computational Hardness. We now analyze the hardness of workG = (V,E)andintegersT,K,andL(asdefinedabove). computationintheDIMEprobleminthenexttwotheorems. 0 Denote by R(H ,A ) the expected total number of influenced T T nodesattheendofroundT, giventheT-lengthhistoryofprevi- THEOREM 5.2. TheDIMEproblemisNP-Hard. ousobservationsandactionsH ,alongwithA ,theactioncho- sen at time T. Let E T[R(H ,A )]Tdenote the expec- PROOF. Consider the case where Eu = Φ, L = 1, T = 1 HT,AT∼ΠT T T andp(e)=1∀e∈E. Thisdegeneratestothestandardinfluence tation over the random variables H = (cid:104)G ,A ,..,A ,G (cid:105) T 0 1 T−1 T maximizationproblemwhichisshowntobeNP-Hard[10]. Thus, and A , where A are chosen according to Π (H )∀i ∈ T i T i theDIMEproblemisalsoNP-Hard. [1,T], and G are drawn according to the distribution over i uncertain edges of G that are revealed by A . The ob- i−1 i SomeNP-Hardproblemsexhibitnicepropertiesthatenableap- jective of DIME is to find an optimal T-step policy Π∗ = T proximation guarantees for them. Golovin et. al. [8] introduced argmax E [R(H ,A )]. ΠT HT,AT∼ΠT T T adaptive submodularity, an analog of submodularity for adaptive Next,weshowhardnessresultsabouttheDIMEproblem. First, settings. Presenceofadaptivesubmodularityensuresthatasimply we analyze the value of having complete information in DIME. greedy algorithm provides a (1−1/e) approximation guarantee Then,wecharacterizethecomputationalhardnessofDIME. w.r.t. theoptimalsolutiondefinedontheuncertainnetwork. How- The Value of Information. We characterize the impact of in- ever, asweshownext, whileDIMEcanbecastintotheadaptive sufficientinformation(abouttheuncertainedges)ontheachieved stochasticoptimizationframeworkof[8],ourinfluencefunctionis solutionvalue.WeshowthatnoalgorithmforDIMEisabletopro- notadaptivesubmodular,becauseofwhichtheirGreedyalgorithm vide a good approximation to the full-information solution value doesnothavea(1−1/e)approximationguarantee. (i.e.,thebestsolutionachievedw.r.t. theunderlyingground-truth network),evenwithinfinitecomputationalpower. THEOREM 5.3. TheinfluencefunctionofDIMEisnotadaptive submodular. Observations.UpontakingaPOMDPaction,we“observe"the groundrealityoftheuncertainedgesoutgoingfromthenodescho- seninthataction.ConsiderΘ(a)={e|e=(x,y)s.t.x∈a ∧ e∈ 1-ε ε ε Eu}∀a∈A,whichrepresentsthe(ordered)setofuncertainedges A B C D thatareobservedwhenwetakeactiona.Then,ourPOMDPobser- e e e vationupontakingactionaisdefinedaso(a) = {F |e ∈ Θ(a)}, 1 2 3 e i.e.,theF-valuesoftheobserveduncertainedges.Forexample,by takingaction{B,C}inFigure3,thevaluesofF andF (i.e.,the 4 5 F-valuesofuncertainedgesinthe1-hopsocialcircleofnodesB andC)wouldbeobserved. Figure5:FailureofAdaptiveSubmodularity Rewards. TherewardR(s,a,s(cid:48))oftakingactionainstates and reaching state s(cid:48) is the number of newly influenced nodes in s(cid:48). Moreformally,R(s,a,s(cid:48)) = ((cid:107)s(cid:48)(cid:107)−(cid:107)s(cid:107)),where(cid:107)s(cid:48)(cid:107)isthe PROOF. Thedefinitionofadaptivesubmodularityrequiresthat numberofinfluencednodesins(cid:48). the expected marginal increase of influence by picking an addi- Initial Belief State. The initial belief state is a distribution tional node v is more when we have less observation. Here the β overallstatess ∈ S. Thesupportofβ consistsofallstates 0 0 expectationistakenovertherandomstatesthatareconsistentwith s = (cid:104)W,F(cid:105) s.t. W = 0∀i ∈ [1,|V|], i.e., all states in which i current observation. We show that this is not the case in DIME allnetworknodesareun-influenced(asweassumethatallnodes problem. Considerapathwith4nodesa,b,c,dandthreedirected areun-influencedtobeginwith). Insideitssupport,eachF isdis- i edgese = (a,b)ande = (b,c)ande = (c,d)(seeFigure5). tributedindependentlyaccordingtoP(F =1)=u(e). 1 2 3 i Letp(e ) = p(e ) = p(e ) = 1,i.e.,propagationprobabilityis Transition And Observation Probabilities. Computation 1 2 3 1;L=2,i.e.,influencestopsaftertworound;andu(e )=1−(cid:15) ofexacttransitionprobabilitiesT(s(cid:48)|s,a)requiresconsideringall 1 u(e ) = u(e ) = (cid:15) for some small enough (cid:15) to be set. That is possible paths in a graph through which influence could spread, 2 3 theonlyuncertaintycomesfromincompleteknowledgeoftheex- whichisO(N!)(Nisnumberofnodesinthenetwork)intheworst istenceofedges. case.Moreover,forlargesocialnetworks,thesizeofthetransition Let Ψ = {e exists} and Ψ = {e ,e exists}. Then andobservationprobabilitymatrixisprohibitivelylarge(duetoex- 1 1 2 1 3 E [f(a,b,c)|Φ∼Ψ ] = 4 since all nodes will be influenced. ponentialsizesofstateandactionspace). Φ 2 E [f(a,c)|Φ∼Ψ ] = 4−(cid:15)sincetheonlyuncertainnodeisb Therefore, instead of storing huge transition/observation ma- Φ 2 whichwillbeinfluencedwithprobability1−(cid:15).Therefore, trices in memory, we follow the paradigm of large-scale online POMDPsolvers[23,7,6]byusingagenerativemodelΛ(s,a) ∼ E [f(a,b,c)|Φ∼Ψ ]−E [f(a,c)|Φ∼Ψ ]=(cid:15). (1) Φ 2 Φ 2 (s(cid:48),o,r)ofthetransitionandobservationprobabilities. Thisgen- NowE [f(a,b)|Φ∼Ψ ] = 2+(cid:15)+(cid:15)2 sincea,bwillbesurely erative model allows us to generate on-the-fly samples from the Φ 1 influenced, c and d will be influenced with probability (cid:15) and (cid:15)2 exactdistributionsT(s(cid:48)|s,a)andΩ(o|a,s(cid:48))atverylowcomputa- respectively. Ontheotherhand,E [f(a)|Φ∼Ψ ]=2+(cid:15)since tional costs. Given an initial state s and an action a to be taken, Φ 1 bwillbesurelyinfluenced(sincee exists)andcwillbeinfluenced ourgenerativemodelΛsimulatestherandomprocessofinfluence 1 with probability (cid:15). Since L = 2, d cannot be influenced. As a spread to generate a random new state s(cid:48), an observation o and result, the obtained reward r. Simulation of the random process of in- fluencespreadisdoneby“playing"outpropagationprobabilities E [f(a,b)|Φ∼Ψ ]−E [f(a)|Φ∼Ψ ]=(cid:15)2. (2) Φ 2 Φ 2 (i.e., flipping weighted coins with probability p(e)) according to Combining Equation (1) and (2), we know that DIME is not ourinfluencemodeltogeneratesamples(cid:48). Theobservationsam- adaptivesubmodular. pleoisthendeterminedfroms(cid:48)anda. Finally,therewardsample r = ((cid:107)s(cid:48)(cid:107)−(cid:107)s(cid:107))(asdefinedabove). Thissimpledesignofthe 6. HEAL:DIMEPROBLEMSOLVER generativemodelallowssignificantscaleandspeedup(asseenin previouswork[23]andalsoinourexperimentalresultssection). TheabovetheoremsshowthatDIMEisahardproblemasitis WesolvethisPOMDPusinganovelalgorithm(describedinSec- difficulttoevenobtainanyreasonableapproximations. Wemodel tion6.1)tofindtheoptimalpolicyΠ∗ fortheDIMEproblem. DIMEasaPOMDP[16]becauseoftworeasons. First,POMDPs T are a good fit for DIME as (i) we conduct several interventions 6.1 HEALER’sDIMESolver sequentially, similar to sequential POMDP actions; and (ii) we havepartialobservability(similartoPOMDPs)duetouncertain- InitialexperimentswiththePOMCPsolver[23]showedthatit ties in network structure and influence status of nodes. Second, ranoutofmemoryon30nodegraphs. Similarly,PSINET-W[29] POMDPsolvershaverecentlyshowngreatpromiseingenerating was simply unable to scale up to real world demands (as shown near-optimalpoliciesefficiently[23].Wenowexplainhowwemap in our experiments). Hence, we propose HEAL, a new heuris- DIMEontoaPOMDP. ticbasedonlinePOMDPplanner(forsolvingtheDIMEproblem) States. A POMDP state in our problem is a pair of binary whichscalesuptoourcollaboratingshelter’srealworlddemands. tupless = (cid:104)W,F(cid:105)whereW andF areoflengths|V|and|E |, U 6.1.1 HEAL respectively.Intuitively,W denotestheinfluencestatusofnetwork nodes,whereW =1denotesthatnodeiisinfluencedandW =0 HEAL solves the original POMDP using a novel hierarchi- i i otherwise. Moreover,F denotestheexistenceofuncertainedges, cal ensembling heuristic: it creates ensembles of imperfect (and whereF = 1denotesthattheith uncertainedgeexistsinreality, smaller)POMDPsattwodifferentlayers,inahierarchicalmanner i andF =0otherwise. (seeFigure6). HEAL’stoplayer createsanensembleofsmaller i Actions. Every choice of a subset of K nodes is a POMDP sized intermediate POMDPs by subdividing the original uncer- action. Moreformally,A = {a ⊂ Vs.t.|a| = K}. Forexample, tainnetworkintoseveralsmallersizedpartitionednetworksbyus- inFigure3,onepossibleactionis{A,B}(whenK =2). ing graph partitioning techniques [13]. Each of these partitioned Algorithm1:TASPSolver Input:UncertainnetworkG,ParametersK,T,L Output:BestKnodeactionκ 1 Createensembleof∆differentPOMDPs; 2 forδ∈∆do 3 αδ =Evaluate(δ); 4 r=Expectation(α); 5 κ=argmaxjrj; 6 returnκ; Algorithm2:EvaluateStep Input:Instantiatednetworkδ,NumberofsimulationsNSim Output:RankedOrderingofactionsαδ Figure6: HierarchicaldecompositioninHEAL 1 tree=Initialize_K_Level_Tree(); 2 counter=0; networks is then mapped onto a POMDP, and these intermediate 3 whilecounter++<NSimdo POMDPsformourtoplayerensembleofPOMDPsolvers. 4 K_Node_Act=FindStep(tree); In the bottom layer, each intermediate POMDP is solved us- 5 LT_Reward=SimulateStep(K_Node_Act); ing TASP (Tree Aggregation for Sequential Planning), our novel 6 UpdateStep(tree,LT_Reward,K_Node_Act); POMDP planner, which subdivides the POMDP into another en- 7 αδ =Get_All_Leaf_Values(tree); sembleofsmallersizedsampledPOMDPs. Eachmemberofthis 8 returnαδ; bottomlayerensembleiscreatedbyrandomlysamplinguncertain edgesofthepartitionednetworktogetasamplednetworkhaving orremovedwithprobability1−u(e), togetaninstantiated net- nouncertainedges,andthissamplednetworkisthenmappedonto workwithnouncertainedges. Werepeatthissamplingprocessto asampledPOMDP.Finally,thesolutionsofPOMDPsinboththe get∆(avariableparameter)differentinstantiatednetworks.These bottomandtoplayer ensemblesareaggregatedusingnoveltech- ∆differentinstantiatednetworksarethenmappedontoto∆dif- niquestogetthesolutionforHEAL’soriginalPOMDP. ferentPOMDPs,whichformourensembleofsampledPOMDPs. HEALusesseveralnovelheuristics. First,itusesanoveltwo- Each sampled POMDP shares the same action space (defined on layered hierarchical ensembling heuristic. Second, it uses graph theinputpartitionednetwork)asthedifferentPOMDPsonlydiffer partitioning techniques to partition the uncertain network, which inthesamplingofuncertainedges. Notethateachmemberofour generates partitions that minimize the edges going across parti- ensembleisaPOMDPaseventhoughsamplinguncertainedgesre- tions(whileensuringthatpartitionshavesimilarsizes).Sincethese movesuncertaintyintheF portionofPOMDPstates,thereisstill partitionsare“almost"disconnected,wesolveeachpartitionsep- partialobservabilityintheW portionofPOMDPstate. arately. Third, it solves the intermediate POMDP for each par- In Step 3 (called the Evaluate Step), for each instantiated net- tition by creating smaller-sized sampled POMDPs (via sampling workδ ∈ [1,∆],wegenerateanαδ listofrewards. Theith ele- uncertainedges),eachofwhichissolvedusinganoveltreesearch mentofαδ givesthelongtermrewardachievedbytakingtheith algorithm, which avoids the exponential branching factor seen in actionininstantiated networkδ. InStep4, wefindtheexpected PSINET[29].Fourth,itusesnovelaggregationtechniquestocom- rewardr oftakingtheith action,bytakingarewardexpectation i binesolutionstothesesmallerPOMDPsratherthansimpleplural- acrosstheαδ lists(foreachδ ∈ [1,∆])generatedintheprevious ityvotingtechniquesseeninpreviousensembletechniques[29]. step.Fore.g.,ifαδ1 =10andαδ2 =20,i.e.,therewardsoftaking These heuristics enable scale up to real-world sizes (at the ex- the1stactioninin1stantiatednetw1orksδ andδ (whichoccurswith 1 2 penseofsacrificingperformanceguarantees),asinsteadofsolving probabilitiesP(δ )andP(δ ))are10and20respectively,thenthe 1 2 onehugeproblem,wenowsolveseveralsmallerproblems. How- expectedrewardr =P(δ )×10+P(δ )×20.NotethatP(δ ) 1 1 2 1 ever,theseheuristicsperformverywellinpractice.Oursimulations and P(δ ) are found by multiplying existence probabilities u(e) 2 showthatevenonsmallersettings,HEALachievesa100Xspeed (or1−u(e))foruncertainedgesthatwerekept(orremoved)inδ 1 upoverPSINET,whileprovidinga70%improvementinsolution andδ . Finally,inStep5,theactionκ = argmax r isreturned quality; and on larger problems, where PSINET is unable to run 2 j j byTASP.Next,wediscusstheEvaluateStep(Step3). atall,HEALcontinuestoprovidehighsolutionquality. Now,we EvaluateStepAlgorithm2generatestheαδ listforasinglein- elaborateontheseheuristicsbyfirstexplainingtheTASPsolver. stantiatednetworkδ ∈ [1,∆]. Thisalgorithmworkssimilarlyfor allinstantiatednetworks. Foreachinstantiatednetwork,theEval- uateStepusesNSim(weuse210)numberofMCsimulationsto 6.1.2 Bottomlayer: TASP evaluate the long term reward achieved by taking actions in that WenowexplainTASP,ournewPOMDPsolverthatsolveseach network. Duetothecombinatorialactionspace,theEvaluateStep intermediatePOMDPinHEAL’sbottomlayer. Givenaninterme- uses a UCT [12] driven approach to strategically choose the ac- diatePOMDPandtheuncertainnetworkitisdefinedon,asinput, tionswhoselongtermrewardsshouldbecalculated.UCThasbeen TASPgoesthroughfoursteps(seeAlgorithm1). usedtosolvePOMDPsin[23,29],butthesealgorithmssufferfrom First,Step1makesourintermediatePOMDPmoretractableby a (cid:0)N(cid:1) branching factor (where K is number of nodes picked per K creating an ensemble of smaller sized sampled POMDPs. Each round,N isnumberofnetworknodes).Weexploitthestructureof memberofthisensembleiscreatedbysamplinguncertainedgesof ourdomainbycreatingaK-levelUCTtreewhichhasabranching theinputnetworktogetaninstantiated network. Eachuncertain factorofjustN(explainedbelow).ThisK-leveltreeallowsstoring edgeintheinputnetworkisrandomlykeptwithprobabilityu(e), rewardvaluesforsmallersizednodesubsetsaswell(insteadofjust Algorithm3:FindStep generatefuturerewardsri∀i∈[1,T0−1].Finally,thelongterm rewardreturnedbySimulateStepisr +r +...+r . Input:Kleveldeeptree-tree 0 1 T0−1 Update Step: The Update Step uses the long term reward re- Output:ActionsetofsizeKnodes-Act 1 Act=Φ; turnedbySimulateSteptoupdaterelevantRvvaluesintheK-level 2 tree_node=tree.Root; tree. ItupdatestheRv valuesofallnodesvthatweretraversedin 3 whileis_Leaf(tree_node)==falsedo ordertofindtheK nodeactionintheFindStep. First,wegetthe 4 MABnode =Get_UCB_at_Node(node); tree’s leaf node corresponding to the K node action that was re- 5 next_node=Ask_UCB(MABnode); turnedbytheFindStep. Then,wegoandupdateRv valuesforall 6 Act=Act∪next_node; ancestors(includingtheroot)ofthatleafnode. 7 tree_node=tree_node.branch(next_node); AfterrunningtheFind,SimulateandEvaluateforNSimsim- 8 returnAct; ulations, wereturntheRv valuesofallleafnodesastheαδ list. Recall that we then find the expected reward r of taking the ith i action,bytakinganexpectationofrewardsacrosstheαδ lists. Fi- Ksizedsubsets),whichhelpsinguidingtheUCTsearchbetter. nally,TASPreturnstheactionκ=argmax r . Algorithm2takesaninstantiatednetworkandcreatestheafore- j j mentionedK-leveltreeforthatnetwork. Thefirstlevelofthetree 6.1.3 Toplayer: UsingGraphPartitioning has N branches (one for each network node). For each branch i inthefirstlevel,thereareN −1branchesinthesecondtreelevel We now explain HEAL’s top layer, in which we use METIS (oneforeachnetworknode,exceptfornodei,whichwascovered [13], a state-of-the-art graph partitioning technique, to subdivide in the first level). Similarly, for every branch j in the mth level ouroriginaluncertainnetworkintodifferentpartitionednetworks. (m ∈ [2,K −1]), there are N −m branches in the (m+1)th These partitioned networks form the ensemble of intermediate level. Theoretically, this tree grows exponentially with K, how- POMDPs(inFigure6)inHEAL.Then,TASPisinvokedoneach ever,thevaluesofKareusuallysmallinpractice(e.g.,4). intermediatePOMDPindependently,andtheirsolutionsareaggre- In this K level tree, each leaf node represents a particular gatedtogetthefinalDIMEsolution.Wetrytwodifferentpartition- POMDP action of K network nodes. Similarly, every non-leaf ing/aggregationtechniques,whichleadstotwovariantsofHEAL: tree node v represents a subset S of network nodes. Each tree KPartitionVariant(HEAL): GiventheuncertainnetworkG v node v maintains a value R , which represents the average long andtheparametersK,LandT asinput,wefirstpartitiontheun- v term reward achieved by taking our POMDP’s actions (of size certainnetworkintoK partitions. Ineachroundfrom1toT,we K) which contain S as a subset. For example, in Figure 3, if invokethebottomlayerTASPalgorithmtoselect1nodefromeach v K = 5, and for tree node v, S = {A,B,C,D}, then R rep- of the K clusters. These singly selected nodes from the K clus- v v resentstheaveragelongtermrewardachievedbytakingPOMDP ters give us an action of K nodes, which is given to shelter offi- actionsA ={A,B,C,D,E}andA ={A,B,C,D,F},since cialstoexecute. Basedontheobservation(aboutuncertainedges) 1 2 bothA andA containS ={A,B,C,D}asasubset.Tobegin thatofficialsgetwhileexecutingtheaction,weupdatethepartition 1 2 v with,allnodesv inthetreeareinitializedwithR = 0(Step1). networks(whichareinputtotheintermediatePOMDPs)byeither v ByrunningNSimnumberofMCsimulations,wegenerategood replacing the observed uncertain edges with certain edges (if the estimatesofR valuesforeachtreenodev. edge was observed to exist in reality) or removing the uncertain v Each node in this K-level tree runs a UCB1 [12] implementa- edge altogether (if the edge was observed to not exist in reality). tionofamulti-armedbandit. Thearmsofthemulti-armedbandit ThelistofKnodeactionsthatAlgorithm4generatesservesasan runningattreenodevcorrespondtothechildbranchesofnodev onlinepolicyforusebythehomelessshelter. intheK-leveltree. Recallthateachchildbranchcorrespondsto TPartitionVariant(HEAL-T): Giventheuncertainnetwork a network node. The overall goal of all the multi-armed bandits GandtheparametersK, LandT asinput, wefirstpartitionthe runninginthetreeistoconstructaPOMDPactionofsizeK (by uncertainnetworkintoT partitionsandTASPpicksKnodesfrom traversingapathfromtheroottoaleaf),whoserewardisthencal- theithpartition(i∈[1,T])intheithround. culatedinthatMCsimulation(explainedinAlgorithm3). Every 7. EXPERIMENTALRESULTS MCsimulationconsistsofthreesteps:FindStep(Step4),Simulate Step(Step5)andUpdateStep(Step6). Inthissection, weanalyzeHEALandHEAL-T’sperformance FindStep:TheFindSteptakesaK-leveltreeforaninstantiated inavarietyofsettings. Allourexperimentsarerunona2.33GHz networkandfindsaK nodeaction,whichisusedintheSimulate 12-coreIntelmachinehaving48GBofRAM.Allexperimentsare Step.Algorithm3detailstheprocessoffindingthisKnodeaction, averaged over 100 runs. We use a metric of “Indirect Influence" which is found by traversing a path from the root node to a leaf throughoutthissection,whichisnumberofnodes“indirectly"in- node,oneedge/armatatime. Initially,webeginattherootnode fluencedbyinterventionparticipants. Forexample, ona30node withanemptyactionsetofsize0(Steps1and2). Foreachnode network,byselecting2nodeseachfor10interventions(horizon), thatwevisitonourwayfromtheroottoaleaf,weuseitsmulti- 20nodes(alowerboundforanystrategy)areinfluencedwithcer- armedbandit(denotedbyMABnode inStep4)tochoosewhich tainty. However,thetotalnumberofinfluencednodesmightbe26 treenodedowevisitnext(or, whichnetworknodedoweaddto (say) and thus, the Indirect Influence is 26−20 = 6. In all ex- ouractionset).WegetaKnodeactionuponreachingaleaf. periments,thepropagationandexistenceprobabilityvaluesonall SimulateStep: TheSimulateSteptakesaK nodeactionfrom networkedgeswereuniformlysetto0.1and0.6,respectively.This theFindStep,toevaluatethelongtermrewardoftakingthatac- wasdonebasedonfindingsinKellyet. al.[9]. However,werelax tion (called Act) in the instantiated network. Assuming that T0 these parameter settings later in the section. All experiments are interventionsremain(i.e.,wehavealreadyconductedT−T0inter- statisticallysignificantunderbootstrap-t(α=0.05). ventions),theSimulateStepfirstusesactionActinthegenerative Baselines: We use two algorithms as baselines. We use modelΛtogeneratearewardr0. Forallremaining(T0−1)in- PSINET-Wasabenchmarkasitisthemostrelevantpreviousal- terventions,SimulateStepusesarolloutpolicytorandomlyselect gorithm, whichwasshowntooutperformheuristicsusedinprac- Knodeactions,whicharethenusedinthegenerativemodelΛto tice;however,wealsoneedapointofcomparisonwhenPSINET- (a)SolutionQuality (b)Runtime (a)VENetwork (b)HDNetwork Figure7:SolutionQualityandRuntimeonRealWorldNetworks Figure8:Scaleupinnumberofnodespickedperround W does not scale. No previous algorithm in the influence maxi- mizationliteratureaccountsforuncertainedgesanduncertainnet- workstateinsolvingtheproblemofsequentialselectionofnodes; in-fact we show that even the standard Greedy algorithm [10, 8] has no approximation guarantees as our problem is not adaptive submodular. Thus,wemodifyGreedybyreplacingouruncertain network with a certain network (in which each uncertain edge e isreplacedwithacertainedgee havingpropagationprobability 0 p(e0) = p(e)×u(e)),andthenruntheGreedyalgorithmonthis (a)SolutionQuality (b)MaximumRelativeGain certainnetwork. WeusetheGreedyalgorithmasabaselineasit isthebestknownalgorithmknownforinfluencemaximizationand Figure9:HorizonScaleup&MaximumGainonHDNetwork hasbeenanalyzedinmanypreviouspapers[3,1,25,10,14,8]. Datasets: Weusefourrealworldsocialnetworksofhomelessrametersp = 0.1,k = 7). Figure11ashowstherun-timeofall youth,providedtousbyourcollaborators. AllfournetworksarealgorithmsonWatts-Strogatznetworks.TheX-axisshowsthesize friendshipbasedsocialnetworksofhomelessyouthlivingindif-of networks and the Y-axis (in log scale) shows the run-time (in ferentareasofabigcityinUSA(namewithheldforanonymity).seconds). ThisfigureshowsthatPSINET-Wfailstoscalebeyond Thefirstandsecondnetworksareofhomelessyouthlivingintwo180nodes,whereasHEALrunswithin5minutes. Thus,PSINET- largeareas(denotedbyVEandHDtopreserveanonymity),respec-Wfailstoscale-uptonetworksizesthatareofimportancetous. tively.Thesetwonetworks(eachhaving∼150-170nodes,400-450 Scale Up Results. Not only does PSINET-W fail in scaling edges) were created through surveys and interviews of homelessuptolargernetworksizes,itevenfailstoscale-upwithincreasing youth(conductedbyourcollaborators)livingintheseareas. Thenumberofnodespickedperround(orK),onourreal-worldnet- third and fourth networks are relatively small-sized online socialworks. Figures8aand8bshowtheIndirectInfluenceachievedby networks of these youth created from their Facebook (34 nodes,HEAL,HEAL-T,GreedyandPSINET-WontheVEandHDnet- 120edges)andMySpace(107nodes,803edges)contactlists,re-worksrespectively(T =5),aswescaleupK values. TheX-axis spectively. WhenHEALERisdeployed,weanticipateevenlargershowsincreasingKvalues,andtheY-axisshowstheIndirectInflu- networks,(e.g.,250-300nodes)thantheoneswehaveinhandandence. Thesefiguresshowthat(i)PSINET-WandHEAL-Tfailto wealsoshowrun-timeresultsonartificialnetworksofthesesizes.scaleup–theycannothandlemorethanK =2andK =3respec- SolutionQuality/RuntimeComparison. WecompareIndirecttively(therebynotfulfillingrealworlddemands); (ii)HEALout- Influence and run-times of HEAL, HEAL-T and PSINET-W onperforms all other algorithms, and the difference between HEAL all four real-world networks. We set T = 5 and K = 2 (sinceandGreedyincreaseslinearlywithincreasingK values. Also,in PSINET-WfailstoscaleupbeyondK = 2asshownlater). Fig-thecaseofK = 6,HEALrunsinlessthan40.12secondsonthe ure7ashowstheIndirectInfluenceofthedifferentalgorithmsonHDnetworkand34.4secondsontheVEnetwork. the four networks. The X-axis shows the four networks and the Thus,Figures7a,7b,8aand8bshowthatPSINET-W(thebest Y-axisshowstheIndirectInfluenceachievedbythedifferentalgo-performing algorithm from previous work) fails to scale up with rithms.Thisfigureshowsthat(i)HEALoutperformsallotheralgo-increasingnetworknodes,andwithincreasingKvalues. Evenfor rithmsoneverynetwork;(ii)itachieves∼70%improvementoverK = 2andmoderatesizednetworks, itrunsveryslowly. More- PSINET-W in VE and HD networks; (iii) it achieves ∼25% im-over, HEAL is the best performing algorithm that runs quickly, provementoverHEAL-T.ThedifferencebetweenHEALandotherprovideshigh-qualitysolutions,andcanscale-uptoreal-worldde- algorithms is not significant in the Facebook (FB) and MySpacemands. SinceonlyHEALandGreedyscaleuptoK =6,wenow (MYS)networks,asHEALisalreadyinfluencingalmostallnodesanalyzetheirperformanceindetail. in these two relatively small networks. Thus, in experiments to ScalingupHorizon. Figure9ashowsHEALandGreedy’sIn- come,wefocusmoreontheVEandHDnetworks. directInfluenceintheHDnetwork,withvaryinghorizons(seeap- Figure7bshowstherun-timeofallalgorithmsonthefournet-pendixforVEnetworkresults).TheX-axisshowsincreasinghori- works. TheX-axisshowsthefournetworksandtheY-axis(inlogzonvaluesandtheY-axisshowstheIndirectInfluence(K = 2). scale)showstherun-time(inseconds). Thisfigureshowsthat(i)ThisfigureshowsthattherelativedifferencebetweenHEALand HEALachievesa100Xspeed-upoverPSINET-W;(ii)PSINET-W’sGreedyincreasessignificantlywithincreasingT values. run-time increases exponentially with increasing network sizes; Next, we scale up K values with increased horizon settings to (iii)HEALruns3XslowerthanHEAL-Tbutachieves25%morefind the maximum attainable solution quality difference between IndirectInfluence.Hence,HEALisouralgorithmofchoice. HEALandGreedy.Figure9bshowstheIndirectInfluenceachieved Next, we check if PSINET-W’s run-times become worse onbyHEALandGreedy(withK =4andT =10)ontheVEandHD largernetworks. Becauseoflackoflargerreal-worlddatasets,wenetworks.TheX-axisshowsthetwonetworksandtheY-axisshows createrelativelylargeartificialWatts-Strogatznetworks(modelpa-theIndirectInfluence. Thisfigureshowsthatwiththesesettings, HEALachieves∼110%moreIndirectInfluencethanGreedy(i.e., ticipants of sequentially deployed interventions, which are orga- u(e) nizedbyhomelessshelterstospreadawarenessaboutHIVpreven- 0.1 0.2 0.3 p(e) tionpracticesamonghomelessyouth. Thisisanextremelyimpor- 0.7 45.62 44.37 30.85 tantproblemashomelessyouthareathigh-risktoHIV(∼10%of 0.6 48.95 24.56 30 homeless youth are HIV positive). While previous work tries to 0.5 29.5 55.18 28.21 solve this problem, it simply fails to scale up to real world sizes anddemands. Itrunsoutofmemoryonlargenetworks, within- (a)DeviationTolerance (b)%IncreaseoverGreedy creasednumberofinterventionparticipants,andrunsveryslowly onmoderatesizednetworks.Inthispaper,wedevelopHEALER,a Figure10:DeviationTolerance&HEALvsGreedy newsoftwareagentforsolvingthisproblemwhichscalesuptoreal worlddemands.HEALERcaststheproblemasaPOMDPanduses acompletelynovelsuiteofalgorithms(HEAL,TASPandEvaluate) u(e) to achieve a 100X speedup over state-of-the-art algorithms while 0.1 0.2 0.3 p(e) outperforming them by 70% in terms of solution quality. More 0.7 24.42 21.02 16.85 than that, it runs when previous algorithms can’t scale up. Also, HEALERsaveshomelessshelters’thousandsofdollarsandmany 0.6 0.0 18.26 12.46 monthsoftimebygeneratinguncertainnetworksatlowcostusing 0.5 11.58 10.53 8.11 itsFacebookapplication. Finally,weshowsomenoveltheoretical (a)ArtificialNetworks (b)%LossinHEALSolution hardnessresultsabouttheproblemthatHEALERsolves.HEALER isfullyreadytobedeployedintherealworld,incollaborationwith Figure11:ArtificialNetworksAndSensitivityAnalysis a homeless shelter. The shelter officials have tested HEALER’s componentsandtheirfeedbackhasbeenpositive. HEALER’sde- morethana2-foldimprovement)inthetworeal-worldnetworks. ploymentisexpectedtocommenceinearlySpring2016. Thisis HEALvsGreedy.Figure10bshowsthepercentageincrease(in anextendedversionofourAAMAS2016paperbythesamename. Indirect Influence) achieved by HEAL over Greedy with varying Fortheconferenceversion,pleasereferto[28]. u(e)/p(e)values.ThecolumnsandrowsofFigure10bshowvary- ingu(e)andp(e)valuesrespectively. Thevaluesinsidethetable REFERENCES cellsshowthepercentageincrease(inIndirectInfluence)achieved byHEALoverGreedywhenbothalgorithmsplanusingthesame [1] C.Borgs,M.Brautbar,J.Chayes,andB.Lucier.Maximizing u(e)/p(e)values. Forexample,withp(e) = 0.7andu(e) = 0.1, SocialInfluenceinNearlyOptimalTime.InProceedingsof HEALachieves45.62%moreIndirectInfluencethanGreedy.This theTwenty-FifthAnnualACM-SIAMSymposiumonDiscrete figure shows that HEAL continues to outperform Greedy across Algorithms,SODA’14,pages946–957.SIAM,2014. varying u(e)/p(e) values. Thus, on a variety of settings, HEAL [2] CDC.HIVSurveillanceReport. dominatesGreedyintermsofbothIndirectInfluenceandrun-time. www.cdc.gov/hiv/pdf/g-l/hiv_ DeviationTolerance. WeshowHEAL’stolerancetodeviation surveillance_report_vol_25.pdf,Mar.2013. by replacing a fixed number of actions recommended by HEAL [3] E.Cohen,D.Delling,T.Pajor,andR.F.Werneck. with randomly selected actions. Figure 10a shows the variation Sketch-basedInfluenceMaximizationandComputation: in Indirect Influence achieved by HEAL (K = 4,T = 10) with Scalingupwithguarantees.InProceedingsofthe23rdACM increasing number of random deviations from the recommended InternationalConferenceonConferenceonInformationand actions.TheX-axisshowsincreasingnumberofdeviationsandthe KnowledgeManagement,pages629–638.ACM,2014. Y-axisshowstheIndirectInfluence.Forexample,whentherewere [4] J.-P.CointetandC.Roth.HowRealisticShouldKnowledge 2randomdeviations(i.e.,tworecommendedactionswerereplaced DiffusionModelsBe?JournalofArtificialSocietiesand with random actions), HEAL achieves 100.23 Indirect Influence. SocialSimulation,10(3):5,2007. ThisfigureshowsthatHEALishighlydeviation-tolerant. [5] N.H.Council.HIV/AIDSamongPersonsExperiencing SensitivityAnalysis. Finally,wetesttherobustnessofHEAL’s Homelessness:RiskFactors,PredictorsofTesting,and solutionsintheHDnetwork(seeappendixforVEnetworkresults), PromisingTestingStrategies. byallowingforerrorinHEAL’sunderstandingofu(e)/p(e)values. www.nhchc.org/wp-content/uploads/2011/ Weconsiderthecasethatu(e) = 0.1andp(e) = 0.6valuesthat 09/InFocus_Dec2012.pdf,Dec.2012. HEALplanson,arewrong. Thus,HEALplansitssolutionsusing [6] J.S.Dibangoye,G.Shani,B.Chaib-Draa,andA.-I. u(e) = 0.1 and p(e) = 0.6, but those solutions are evaluated Mouaddib.TopologicalOrderPlannerforPOMDPs.In ondifferent(correct)u(e)/p(e)valuestogetestimatedsolutions. InternationalJointConferenceonArtificialIntelligence Theseestimatedsolutionsarecomparedtotruesolutionsachieved (IJCAI),2009. byHEALifitplannedonthecorrectu(e)/p(e)values.Figure11b showsthepercentagedifference(inIndirectInfluence)betweenthe [7] A.EckandL.-K.Soh.ToAsk,Sense,orShare:AdHoc true and estimated solutions, with varying u(e) and p(e) values. InformationGathering.InProceedingsofthe2015 Forexample,whenHEALplansitssolutionswithwrongu(e) = InternationalConferenceonAutonomousAgentsand 0.1/p(e) = 0.6values(insteadofcorrectu(e) = 0.3/p(e) = 0.5 MultiagentSystems,pages367–376.International values), it suffers a 8.11% loss. This figure shows that HEAL is FoundationforAutonomousAgentsandMultiagent relativelyrobusttoerrorsinitsunderstandingofu(e)/p(e)values, Systems,2015. asitonlysuffersanaverage-caselossof∼15%. [8] D.GolovinandA.Krause.AdaptiveSubmodularity:Theory andApplicationsinActiveLearningandStochastic Optimization.JournalofArtificialIntelligenceResearch, 8. CONCLUSION 42:427–486,2011. This paper focuses on the important problem of selecting par- [9] J.A.Kelly,D.A.Murphy,K.J.Sikkema,T.L.McAuliffe, R.A.Roffman,L.J.Solomon,R.A.Winett,andS.C. POMDPPlanningwithRegularization.InAdvancesIn Kalichman.Randomised,Controlled,Community-Level NeuralInformationProcessingSystems,pages1772–1780, HIV-PreventionInterventionforSexual-RiskBehaviour 2013. amongHomosexualmeninUScities.TheLancet, [25] Y.Tang,X.Xiao,andY.Shi.Influencemaximization: 350(9090):1500,1997. Near-OptimalTimeComplexitymeetsPracticalEfficiency. [10] D.Kempe,J.Kleinberg,andÉ.Tardos.Maximizingthe InProceedingsofthe2014ACMSIGMODinternational SpreadofInfluencethroughaSocialNetwork.In conferenceonManagementofdata,pages75–86.ACM, ProceedingsoftheninthACMSIGKDDinternational 2014. conferenceonKnowledgediscoveryanddatamining,pages [26] UNAIDS.ReportontheGlobalAIDSEpidemic. 137–146.ACM,2003. www.unaids.org/en/resources/campaigns/ [11] M.KimandJ.Leskovec.TheNetworkCompletionProblem: 20121120_globalreport2012/globalreport/, InferringMissingNodesandEdgesinNetworks.In Mar.2012. ProceedingsoftheSIAMConferenceonDataMining. [27] T.W.ValenteandP.Pumpuang.IdentifyingOpinionLeaders SIAM,2011. toPromoteBehaviorChange.HealthEducation&Behavior, [12] L.KocsisandC.Szepesvári.BanditbasedMonte-Carlo 2007. Planning.InMachineLearning:ECML2006,pages [28] A.Yadav,H.Chan,A.Jiang,H.Xu,E.Rice,andM.Tambe. 282–293.Springer,2006. UsingSocialNetworkstoAidHomelessShelters:Dynamic [13] D.LaSalleandG.Karypis.Multi-threadedGraph InfluenceMaximizationunderUncertainty-AnExtended Partitioning.InParallel&DistributedProcessing(IPDPS), Version.InProceedingsoftheFiftienthInternational 2013IEEE27thInternationalSymposiumon,pages ConferenceonAutonomousAgentsandMultiagentSystems 225–236.IEEE,2013. (AAMAS2016),2016. [14] J.Leskovec,A.Krause,C.Guestrin,C.Faloutsos, [29] A.Yadav,L.Marcolino,E.Rice,R.Petering,H.Winetrobe, J.VanBriesen,andN.Glance.Cost-effectiveOutbreak H.Rhoades,M.Tambe,andH.Carmichael.PreventingHIV DetectioninNetworks.InProceedingsofthe13thACM SpreadinHomelessPopulationsUsingPSINET.In SIGKDDinternationalconferenceonKnowledgediscovery ProceedingsoftheTwenty-SeventhConferenceonInnovative anddatamining,pages420–429.ACM,2007. ApplicationsofArtificialIntelligence(IAAI-15),2015. [15] L.Marcolino,A.Lakshminarayanan,A.Yadav,and [30] Q.Yan,S.Guo,andD.Yang.InfluenceMaximizingand M.Tambe.SimultaneousInfluencingandMappingSocial LocalInfluencedCommunityDetectionbasedonMultiple Networks.InProceedingsoftheFiftienthInternational SpreadModel.InAdvancedDataMiningandApplications, ConferenceonAutonomousAgentsandMultiagentSystems pages82–95.Springer,2011. (ShortPaper)(AAMAS2016),2016. [31] S.D.YoungandE.Rice.OnlineSocialNetworking [16] M.L.Puterman.MarkovDecisionProcesses:Discrete Technologies,HIVknowledge,andSexualRiskandTesting StochasticDynamicProgramming.JohnWiley&Sons, BehaviorsamongHomelessYouth.AIDSandBehavior, 2009. 15(2):253–260,2011. [17] E.Rice.ThePositiveRoleofSocialNetworksandSocial NetworkingTechnologyintheCondom-usingBehaviorsof HomelessYoungPeople.Publichealthreports,125(4):588, 2010. [18] E.Rice,A.Barman-Adhikari,N.G.Milburn,andW.Monro. Position-specificHIVriskinaLargeNetworkofHomeless Youths.Americanjournalofpublichealth,102(1):141–147, 2012. [19] E.Rice,A.Fulginiti,H.Winetrobe,J.Montoya,A.Plant, andT.Kordic.SexualityandHomelessnessinLosAngeles publicschools.AmericanJournalofPublicHealth,102, 2012. [20] E.Rice,E.Tulbert,J.Cederbaum,A.B.Adhikari,andN.G. Milburn.MobilizingHomelessYouthforHIVPrevention:a SocialNetworkAnalysisoftheAcceptabilityofa face-to-faceandOnlineSocialNetworkingIntervention. Healtheducationresearch,27(2):226,2012. [21] S.Ross,J.Pineau,S.Paquet,andB.Chaib-Draa.Online PlanningAlgorithmsforPOMDPs.JournalofArtificial IntelligenceResearch,pages663–704,2008. [22] J.A.Schneider,A.N.Zhou,andE.O.Laumann.AnewHIV PreventionNetworkApproach:SociometricPeerChange AgentSelection.SocialScience&Medicine,125:192–202, 2015. [23] D.SilverandJ.Veness.Monte-CarloPlanninginlarge POMDPs.InAdvancesinNeuralInformationProcessing Systems,pages2164–2172,2010. [24] A.Somani,N.Ye,D.Hsu,andW.S.Lee.DESPOT:Online

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.