ebook img

Using reflective pavements to mitigate urban heat island in warm climates - Results from a large scale urban mitigation project PDF

2018·6.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Using reflective pavements to mitigate urban heat island in warm climates - Results from a large scale urban mitigation project

UrbanClimate24(2018)326–339 ContentslistsavailableatScienceDirect Urban Climate journalhomepage:http://www.elsevier.com/locate/uclim Using reflective pavements to mitigate urban heat island in warm climates - Results from a large scale urban mitigation project G-E.Kyriakodisa,*,M.Santamourisa,b aGroupBuildingEnvironmentalStudies,PhysicsDepartment,UniversityofAthens,Athens,Greece bTheAnitaLawrenceChairinHighPerformanceArchitecture,SchoolofBuiltEnvironment,UniversityofNewSouthWales,Sydney,Australia A R T I C L E I N F O A B S T R A C T Articlehistory: UHIisthemoststudiedphenomenonofclimatechangeandreferstotheincreasedambi- Received14October2016 enttemperatureofcitiescomparedtoruralsettings.Implementationofreflectivematerials Receivedinrevisedform3February2017 tourbanstructures,suchasroadsandpavements,reducesthesurfaceandambienttemper- Accepted7February2017 atureandcontributestocounterbalancetheimpactofthephenomenon.Thepresentpaper Availableonline10February2017 describesthedesignandtheexperimentalevaluationofalargescaleimplementationofcool asphalticandconcretepavementsinamajortrafficaxisofWesternAthenscoveringatotal Keywords: zone of 37,000m2. To our knowledge, this project is one of the largest urban mitigation Heatisland projectsintheworld.Extendedmonitoringwasperformedintheareaduringtheentiretyof Coolmaterialsandpavements thesummerperiod,whileComputationalFluidDynamics(CFD)simulationwasusedtoeval- Coolcolouredthinlayerasphalt uatethethermalimpactoftheapplication.Itwasconcludedthattheuseofcoolnon-aged Photocatalyticpavements asphaltcanreducetheambienttemperaturebyupto1.5◦Candthemaximumsurfacetem- Heatislandmitigationtechniques peraturereductioncouldreach11.5◦C,whilethethermalcomfortconditionscanimprove Urbanclimaticchange considerably. Ageing phenomena may reduce substantially and up to 50% the mitigation potentialofcoolasphalticmaterials. ©2017ElsevierB.V.Allrightsreserved. 1. Introduction Theurbanheatislandphenomenonreferstotheincreaseoftheambienttemperatureofcitiescomparedtotheirsurrounding suburbanandruralenvironment.Increasedurbantemperatureistheresultofthepositivethermalbalanceofcitiescaused by the additional heat released and stored in the urban structure, and the lack of low temperature environmental sinks (Santamouris,2001).Theurbanheatislandisthemoststudiedphenomenonofclimatechange,andtherearemorethan400 citiesaroundtheworldwhereexperimentaldocumentationisavailable(Santamouris,2015a,2016b).Theamplitudeofthe phenomenonvariesasafunctionofthelocalcharacteristicsandofthestrengthoftheheatsourcesandmayexceed6–7K (SantamourisandKolokotsa,2016). Local climate change has a significant impact on the energy consumption of buildings, it increases the concentration of local pollutants, deteriorates indoor and outdoor thermal comfort conditions, increases the vulnerability of low-income *Correspondingauthor. E-mail address:[email protected](G.-E.Kyriakodis). http://dx.doi.org/10.1016/j.uclim.2017.02.002 2212-0955/©2017ElsevierB.V.Allrightsreserved. G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 327 population and affect health conditions, while it raises the global ecological footprint of cities (Baccini et al., 2008; Pantavou et al., 2011; Sakka et al., 2012; Santamouris, 2015b; Santamouris and Kolokotsa, 2015; Santamouris et al., 2007; Stathopoulou et al., 2008). Recent studies have shown that the urban heat island increases the peak electricity demand during the summer period between 0.45% and 4.6% per degree of temperature increase (Santamouris et al., 2015b), while the annual energy consumption for cooling may increase up to 100% (Hassid et al., 2000; Santamouris etal.,2001).Compilationoftheexistingdataontheenergypenaltyinducedbytheurbanheatislandhasshownthatitisclose to0.8kWhperunitofcitysurfaceanddegreeoftemperatureincreaseoralmost68kWhperpersonanddegree(Santamouris, 2014b). Forecastsoffuturecoolingenergyconsumptionofresidentialandcommercialbuildingsrevealthatby2050itmayincrease upto750%and275%,respectively,becauseofthelocalandglobalclimatechange,thetremendousincreaseofthepopulation andtheexpectedincreasepenetrationofthecoolingsystemsaroundtheworld(Santamouris,2016a).Tocounterbalancethe temperatureincreaseintheurbanenvironmentandreduceasmuchaspossibleitsimpactonenergyandenvironment,advanced and efficient mitigation technologies have been developed and applied widely (Akbari et al., 2016). Proposed mitigation technologiesinvolvetheuseofreflectivematerialstosolarradiation,additionalurbangreeneryintegratedintobuildingsand thecitystructure,dissipationoftheexcessurbanheatintolowtemperatureheatsinkslikethegroundandthewater,solar shading,reductionoftheanthropogenicheatanduseofevaporationtechnologies(AkbariandKolokotsa,2016). Highly reflective materials to solar radiation when used in the urban environment present a significantly lower surface temperature and contribute to reducing the sensible heat released in the atmosphere and mitigating the urban heat island (Doulosetal.,2004).Reflectiveorcoolmaterialsmaybeusedontheroofsofurbanbuildings,coolroofs,andaspavements intheopenurbanspaces,coolpavements.Severaltypesandtechnologiesofcoolmaterialsforbuildingsandpavementshave been developed involving reflective materials in the visible or infrared part of solar radiation (Synnefa et al., 2007, 2006), thermochromiccoatings(Karlessietal.,2009),reflectiveasphalticproducts(Synnefaetal.,2011)reflectivemembranesand retroreflectivematerials(Piselloetal.,2016;Rossietal.,2015;Santamourisetal.,2011),etc.Analysisoftensofstudiesand largescaleapplicationshaveshownthattheuseofcoolmaterialsintheurbanenvironmentmaydecreasetheaverageandpeak ambienttemperatureupto1.0Kand2.5Krespectively(Santamouris,2014a). Thedevelopmentofreflectiveand/orperviouspavementmaycontributesignificantlyreducingtheurbantemperatureand mitigating the urban heat island. Several technologies of reflective pavements have been developed and are commercially available while important research is carried out on the topic (Santamouris, 2013). Hundreds of large scale applications of reflectivepavementsareavailablearoundtheworldandtheirexperimentalevaluationshowsthattheirmitigationpotential isquitehigh(Castaldoetal.,2015;Fintikakisetal.,2011;Gaitanietal.,2011;HuynhandEckert,2012;OMalleyetal.,2015; Santamourisetal.,2012;Tumini,2014;Wangetal.,2016b).Arecentanalysisof15largescalemitigationprojectsinvolvingthe useofvarioustypesofreflectivepavementshasshownthattheaverageandthepeaktemperaturedropachievedwas1.3Kand 2.5K,respectively(Santamourisetal.,2016),whiletheaverageandpeaktemperaturedropsper10%increaseofthealbedowas closeto0.27Kand0.94K. TheexistenceandthecharacteristicsoftheurbanheatislandphenomenonisverywelldocumentedinthecityofAthens, Greece (Livada et al., 2002; Mihalakakou et al., 2004). The phenomenon is more intense in the Western part of the city characterizedbyhighurbandensity,increasedanthropogenicheat,andlackofgreenspaces,anditsmagnitudemayexceed 6–7K (Giannopoulou et al., 2014; Mihalakakou et al., 2002). To counterbalance the significant impact of the high ambient temperaturesinthearea,alargescalerehabilitationprograminvolvingtheuseofvariousmitigationtechnologieshasbeen designedandimplemented(Santamourisetal.,2015a). Thepresentpaperpresentsthedesignandtheexperimentalevaluationofalargescaleimplementationofcoolasphaltic andconcretepavementsonamajortrafficaxisofWesternAthens,coveringatotalzoneof37,000m2.Theprojectis,toour knowledge,oneofthelargesturbanmitigationprojectsintheworld. 2. Descriptionofthesite Therehabilitativeareaisthemaintrafficaxis(ThivonAvenue)oftheMunicipalityofEgaleo,situatedinthewesternsuburbs ofAthenswiththelongaxisinaNE(cid:3)N-SW(cid:3)Sdirection(67◦fromrealNorthcounter-clockwise)asFig.1depicts.Thegeometrical characteristicofthetrafficaxiswasL/W=8.Itconsistsoffourtrafficlanesseparatedwitharefugeislandwithplantedtrees along its axis. Furthermore, both sides of the road are covered with pavements and there are three-to four-story buildings adjacenttothem,whichcharacterizetheareaasamixedresidentialandindustrialzone.Theaxissupportsintensivetraffic whiletheanthropogenicheatreleasedisquitehigh.Theroadwasinitiallycoveredwithconventionalblackasphalt,whilegrey concretetileswereusedaspavements.Theclimateoftheareacorrespondstoveryhotanddrysummersanditisinfluencedby thepresenceofmountEgaleowhichactsasanaturalobstacleagainstthenorthernwinds,whichdominateduringthesummer periodintheAthensarea.Detailedclimaticmonitoringofthearea,hasshownthatthespecificurbanzonepresentsthehigh ambienttemperatureinthecityofAthens(Giannopoulouetal.,2011).TheprojectwascarriedoutbythePrefectureofAthensin collaborationwiththelocalMunicipalityandwasbuiltbetween2014and2015.Therenovationcoversatotalareaof37,000 m2 andisthegreatestrecordedinGreece.Itinvolvestheimplementationofapproximately18,000m2ofcoolcolouredthinlayer asphaltandofapproximately19,300m2ofreflectiveconcretepavements. 328 G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 Fig.1. Orientationofrehabilitativearea,Egaleo,Athens. 3. Characteristicsoftheinstalledreflectivepavements Pavementmaterialswereselectedinorderto: (a) Improveasmuchaspossiblethethermalconditionsinthearea,mitigatetheurbanheatislandandenhancethermal comfortconditions. (b) Ensuringdrivingsafetybyavoidingundesirablecontrastlevelsandglare. (c) Ensuringtheenvironmentalremediationbyreducingmotorvehicleairpollutants(NO ). 2 Tosatisfytheaboveobjectives,theexistingblackconventionalasphaltpresentingasolarreflectanceSRcloseto0.04was replacedbyalightyellowthinlayerasphaltcharacterizedbySR=0.35andanemissivitycloseto0.9(Fig.2).Toavoidproblems ofcontrastandglare,thematerialwasdesignedtopresentmuchhigherreflectivityinthenearinfraredthaninthevisiblepartof thesolarradiation(Table1).Theyellowthinlayerasphaltwasdevelopedbymixinganelastomericasphaltbinderwithinfrared reflectivepigmentsandaggregatesandthefinalapplicationwasachievedwithslurrysurfacingtechnique. Inparallel,thegreyconcretepavementswerereplacedbywhiteconcretepavements(SR=0.66)mixedwithpigmentsof TiO .ThespectralreflectanceofthepavementsisgiveninFig.3,whileapictureofthepavementtilesinthevisibleandinfrared 2 is given in Fig. 4. The infrared emittance of the pavements was measured as close to 0.9, according to the ASTM Standard E408-71:StandardTestMethodforTotalNormalEmittanceofSurfaces.Whenexposedtosunlightandinthepresenceofalow concentrationofwatermolecules,TiO containedwithinthepavementsgenerateshydroxylradicals(OH),apowerfuloxidizing 2 agent.Theseradicalspromotetheoxidationofavarietyoforganicandinorganicpollutants(Wangetal.,2016a).Notably,the photocatalyticpropertyofthesepavementsresultedtoa15%inoxidationofNO toNO (Fig.5). X 3 Theageingofthematerialsandinparticularthepotentialopticaldegradationanddecreaseofthereflectivitywasassessed throughcontinuousmonitoringoftheiropticalperformance.Thespectralreflectancesofthematerialsweremeasuredinthe Materials Lab of theUniversityofAthens,using a UV/vis/NIRspectrophotometer(Varian Carry 5000)fittedwitha 150mm diameterintegratingspherethatcollectsbothspecularanddiffuseradiation,accordingtotheASTMStandardE903-96:Standard TestMethodforSolarAbsorptance,ReflectanceandTransmittanceofMaterialsUsingIntegratingSpheres.Itwasfoundthatafter sixmonthsofcontinuoususe,thereflectivityofthecoolasphaltwasreducedfrom0.33to0.17(Fig.6).Decreaseofthesolar reflectanceisattributedtothedepositionofrubberfromthetyresofcarsonthesurfaceofcoolasphalticmaterialsjustafter theirinstallation(Synnefaetal.,2011)andalsotothedecreaseofthereflectivityofthecoolpavementsbecauseofthedeposition ofseveralatmosphericpollutantsontheirsurface(Mastrapostolietal.,2016).Itisobservedthatthecoolasphalticmaterial recoverstheinitialreflectivityalmostfully,(SR=0.33),whenscrubbingitwithwetsolvent(H O).Inordertofurtherinvestigate 2 thespecificopticaldegradationoftheasphalticmaterial,FourierTransformInfraredspectroscopytechniqueswereusedtotest thecleanerandthepollutantsample.FTIRmeasurementsidentifiedtheexistenceofadditionalthreebandvibrationsat:3422.3, 1028.96,470.21cm−1whichlabelN–H,C–NandPb–Obondsrespectively.Itisconcludedthatthecontaminatedsampleswere G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 329 Fig.2. Apictureoftheinstalledyellowthinlayerasphalt. polluted by the particle compounds of motor vehicle emissions and the deposition of the tyres of vehicles. Contrary to the asphalticmaterial,thevariationofthesolarreflectivityoftheconcretepavementswasalmostinsignificant. 4. Monitoringcampaignandexperimentalassessment Theexperimentalassessment,exceptforthelaboratorymeasurementspresentedabove,includedanextensivemonitoring strategyofinsitumeasurementsinthearea.Thence,adetailedmonitoringcampaignwasscheduledinordertoevaluatethe impactoftheimplementedcoolpavementsinthemicroclimateoftheareaandtodocumentthethermalperformanceofthe selectedmaterialscomparedtotheconventionalones.Thenecessaryvaluesfortheboundaryconditionsofthethermalmodel werealsorecorded. ThemonitoringcampaignwasperformedduringtheentiretyofthesummerperiodofMay–September2015andatleast threerecordspermonthwerecarriedoutbasedonthesameexperimentalprotocol.Theoutdoorclimaticconditionsofthe experimentalperiodwerecharacterizedbyveryhotdays(approximatingaheatwave)andtypicalclearskyconditions.We emphasizedthetimeintervalbetween12:00and17:00LST,duetothesebeingthehoursofmaximumsolarradiationand, consequently, the hours of maximum solar gains. Measurements of the ambient temperature and relative humidity were recorded with a data logger at a height of 1.5m, placed in a thermometer shelter near the traffic axis. The accuracy of the thermometerwas±0.1K.Inparallel,theinstantaneousvaluesofsurfacetemperaturesweremeasuredattimestepsof30min (Fig.7).Thesamplepointsofmeasurementswerealwaysthesame,selectedfornotbeingshadedandprovidingassuredaccess todifferenttypesofasphalt.Itisworthstatingthateverytwoweeks,thecoolcolouredasphaltwascleanedbymeansofwet solvent(H O)scrubsatleastonedaybeforetheinitialmeasurementinordertoeliminateevaporationeffects.Thereference 2 pointswerethefollowing: Table1 Solarreflectancevalues(SR,300–2500nm)andsolarreflectancevaluesintheUV(300–400nm),vis(400–700nm)and IR(700–2500nm)partofthespectrumofcoollightyellowandconventionalblackasphalt. Sample SR SRUV SRVIS SRNIR Lightyellowasphalt 0.35 0.11 0.24 0.42 Conventionalblackasphalt 0.04 0.04 0.03 0.04 330 G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 Fig.3. Thesolarreflectanceoftheimplementedpavements. 1. S conventionalblackasphalt 1 2. S conventionalfaintasphalt 2 3. S lightyellowcoolasphalt 3 4. S lightyellowcoolcontaminatedasphalt 4 5. S coolphotocatalyticpavement(colouredwhite) pl 6. Sgreyconventionalpavement(colouredgrey). Theinstrumentsusedtodepictsurfacetemperaturedifferencesamongsamplepointswereaninfraredcamera(AGEMA Thermovision570,7.5–13lmwavelength)andavisualIRThermometer(FlukeVT02).Theambientclimaticconditionswere alsorecorded,whileclimaticdataaroundtheexperimentalsite,includingambienttemperature,relativehumidity,windspeed anddirection,globalanddirectsolarradiationonahorizontalsurfacewerecollectedfromthreemeteorologicalstationsofthe NOA(NationalObservatoryofAthens). 5. Monitoringresults Onsitecomparativemeasurementsrevealedthattheaveragesurfacetemperatureofthereflectiveasphaltoverthecool- ingperiodisbyupto7.5◦Clowerthanthecorrespondingsurfacetemperatureoftheconventionalasphalt.Insomecasesof extremelyhotconditions,themaximumtemperaturedifferencebetweenthereflectiveandconventionalasphaltcouldreach 11.5◦C.AlmostsimilarresultsarereportedinSynnefaetal.(2011),CarnieloandZinzi(2013),KawakamiandKubo(2008), Kondoetal.(2008),Nishiokaetal.(2006).Fig.8reportsthemeasurementstakenonthe18thofJuly,consideredasthemost representativedayofmeasurementsfortheentiresummer. Fig.4. Infraredandvisibleimagesofcoolphotocatalyticpavements(18/07/2015,14:30LST)onsite. G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 331 Fig.5. Thephotocatalyticpropertyoftheimplementedpavements. Surface temperatures are found to present the same diurnal trend. Specifically, the maximum surface temperature of theblackconventionalasphaltwas68.5◦C,at15:30while,atthesametime,thereflectivelightyellowasphaltwasalmost 8.9◦Clower,thusreaching59.6◦C.Duringthemeasurementperiod,thedifferencesbetweenthereflectiveandconventional asphalt, varied between 7.5 and 8.9◦C and the average surface temperature difference was 8.3◦C. In parallel, the surface temperatureofthepollutedreflectiveandoftheconventionalfaintasphaltspresentedasimilartemporaltrend.Maximum surfacetemperaturesweremeasuredataround63.1◦Cand64.8◦Crespectively.Theaveragesurfacetemperaturereduction was close to 1.7◦C. Notably, the corresponding decrease depends on the sample point. In general, the relative decrease of thecoolingperiodisapproximately3.0◦C.Fluctuationsinmeasuredvaluescorrespondtowindgusts.Thedailyvariationof theconcretepavementsfollowedthesametrendastheasphalticmaterials.Theaveragesurfacetemperaturedecreaseofthe reflectivepavementswasmeasuredcloseto6.1◦C,comparedtotheinitiallyinstalledconcretepavement(Fig.9). Inparallel,theaverageambienttemperatureduringthemeasurementtimeinterval(10:00–18:00)intheareaextracted bythesensornearthetrafficaxisandat1.5mheightwas32.8◦Cwhilethemaximumvaluewasrecordedat16:30reaching 34.5◦C.Relativehumiditymeasurementsrangedbetween22.3%(minimum15:30)and40%(maximum11:00)presentingan averageof27.1%forthesametimeinterval(Fig.10).Thecorrespondingmeasurementsofthenearestmeteorologicalstation (elevation:50m)alsorecordedthemaximumat16:30presentingavalueof33.5◦C,whiletheaverageambienttemperaturefor thereferencedtimeintervalwas32.5◦C.Asconcernssolarradiation,themaximumvaluewasrecordedat15:00reachingthe valueof844W/m2. Fig.6. Solarreflectanceofclean(blue)andpolluted(red)coolasphalt. 3 3 2 G -E . K y ria k o d is, M . S a n ta m o u ris / U rb a n C lim a te 2 4 (2 0 1 8 ) 3 2 6 – 3 3 Fig.7. Infraredandvisibleimagesoftheconventionalblack(a),upstreamcool(b),downstreamcool(c)andcomparisonbetweenthem(18/07/2015,14:00LST)onsite. 9 G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 333 Fig.8. ComparisonofthemeasuredsurfacetemperaturesoffourdifferentasphaltsamplesattheupstreaminThivonAvenueon18thofJuly.Blackcurve depictsambienttemperaturebase. 6. Assessingthemitigationperformanceandthethermalimprovementsintherehabilitatedurbanzone Adirectcomparisonoftheexperimentalmeasurementsperformedbeforeandaftertheclimaticrehabilitationofaplaceis notpossiblegiventhatmeasurementsaretakenundercompletelydifferentclimaticandboundaryconditions.Toovercome the problem, a specific methodology was proposed and applied in Santamouris et al. (2012). According to the proposed methodology, the collected experimental data are used to validate a numerical simulation model developed to predict the thermalperformanceintheconsideredarea.Themodelisthenusedtosimulatethethermalconditionsintheareabeforeand aftertherehabilitationusingexactlythesameclimaticandboundaryconditions.Acomparisonofthetwosetsofcalculated datapermitstoassesstheachievedthermalimprovementsintheconsideredarea. AmodeloftheurbanzonewithallspecificdetailshasbeendevelopedusingtheEnviMetSoftware(Bruse,2004).ENVI-met is a three-dimensional microclimate model designed to simulate the surface-plant-air interactions with the urban environ- ment.ItisbasedonReynoldsAveragedNavier-Stokes(RANS)equations,withanon-hydrostatic,micro-scale,obstacle-resolving model and advanced parameterizations for simulation of surface-plant-air interactions in urban environments. ENVI-met providesbothspatialresolution(0.5–10m)andtemporalvariation(finest10sresolution)foranurbanboundarylayerclimate. Additionally,ENVI-methasfeaturesnotcommonlyavailableinotherCFDdispersioncodes(e.g.adetailedmicroclimatemodule andavegetationmodule).Therequiredinputincludesmeteorologicaldataanddomaincharacteristics. Fig.9. Comparisonofthemeasuredsurfacetemperaturesofdifferentpavementsampleson18thofJuly.Blackcurvedepictsbaseambienttemperature. 334 G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 Fig.10. Ambientclimaticconditionsforthe18thofJuly. Fig.11. Geometryandcalculationdomain(a),satelliteimage(b)ofthesimulatedarea. Thephysicaldimensionsofthesitecorrespondtoa1800(x)×224(y)×150(z)mandthecalculationdomainconsistsof 576×80×30cellsateachaxisrespectively(Fig.11).Throughthelimitedresolutionthatthenoncommercialbasicversion provides,themaindomainwassplitintothreesub-areasofequidistancelengtheach.Thescenarioofchangingthehorizontal gridsize(dx,dy)wasdeemedunacceptable.Otherwise,itwouldhavebeennearimpossibletoconsidertheplantedrefugeisland whichhasgreatimpactonsurfacetemperatures.Therefore,thedimensionsofeachsub-areaconsistof192×80×30cells.Note thatthemodelareaisrotated293.4◦outofgridnorth.Inordertoavoidnumericalproblemsbecauseoftheinterferenceofthe modelborderswithinternalmodeldynamics,sevenadditionalnestinggridswereincluded.Concerningturbulence,the1.5order E-epsilonturbulenceclosuremodelisused.Attheoutflowandlateralboundaries,azerogradientconditionwasused,whileat Table2 Inputdataoftheconfigurationfile. Buildingproperties Values Insidetemperature[K] 301 Heattransmissionwalls[W/m2K] 1.1 Heattransmissionroofs[W/m2K] 1.1 Albedowalls 0.2 Albedoroofs 0.2 G-E.Kyriakodis,M.Santamouris/UrbanClimate24(2018)326–339 335 Fig.12. Hourlysimulatedvs.measuredairtemperatureforthe14thofJune. thetopboundary,allverticalmotionswereassumedtobezero.Thecalculationofthevariationsoflateralboundaryconditions (LBC)oftemperatureandhumiditywaschosentobethe“open”method.Withthismethod,thevaluesofthenextgridpoint closetotheborderarecopiedtotheborderateachtimestep(KawakamiandKubo,2008).Thevariationoflateralboundary conditionofkineticenergyoftheairinflowwasinsteadcalculatedwiththe“forced”methodbywhichthevaluesoftheone dimensionalmodelarecopiedtotheborder.Inaddition,fortheaccomplishmentoftheconfigurationfile,importsconcerning insidetemperatureandthermophysicalpropertiesofthebuildingswereintroduced,asshowninTable2,inaccordancewith thecharacteristicsofthemajorityofthebuildingsinthesite. Simulationswereperformedfordifferentmeasuredboundaryconditionsinordertobettercorroboratetherealconditions. Thus,the14thofJunewaspreferredbecauseitappearedtohaveanincreasedambienttemperatureandbetterpresentedthe summerclimaticconditionsinthearea.Thewindataheightof10mwasmeasuredtobealeadingnorthwindof1.9m/s, whiletheroughnesslength(z )wasestimatedtobe0.6accordingtoBruseandFleer(1998).Thesolarradiationadjustment 0 factorwassetto0.9tosimulatetheintenseradiationlevelofthespecificclearsummerdayinAthens.Fortheinitialairtem- perature,thevalueof305.5Kwasused.Threescenariosaresimulated.Thefirstscenariocorrespondedtotheinitialconditions beforetheclimaticrehabilitation,thesecondandthirdscenariosdescribedthespecificconditionsaftertherehabilitationtaking intoaccountorneglectingtheopticaldegradationofthematerialsrespectively,(coolandagedcoolscenarios).Thecalculated distributionofthesurfaceandambienttemperature,asobtainedfromthesecondscenario,werecomparedwiththecorre- spondingmeasurementsinordertoachievethebestpossiblecalibrationofthemodel.Anacceptableagreementbetweenthe experimentalandtheoreticalresultswasobtainedandthemaximumdifferenceoftheambientandsurfacetemperaturesdid notexceed0.4Kand0.8K,respectively.Fig.12presentsthecorrelationbetweenthesimulatedandmeasuredvaluesofthe ambienttemperature.TheR2indexwascalculatedequalto92.7%. Sincethemodelwascalibratedandvalidated,simulationswereperformedforthethreescenariosasmentionedaboveand foreachsub-arearesultinginninefinalsimulationsintotal.Simulationshaveshownthattheimplementedreflectiveasphaltic materialcaneffectivelyreducethesurfacetemperaturesonasummerday,evenifitsreflectivityisreducedbecauseofthe ageingprocesses.Inparticular,thenonagedasphalticmaterial,(albedoof0.35),presentedupto9.0Klowertemperaturethan theconventionalasphalt,(Table3),whiletheloweralbedoasphalt,(albedoof0.17),hadupto6Klowersurfacetemperature thantheconventionalmaterial(Table4).Inparallel,thesurfacetemperatureoftheconcretepavements,(albedo0.66),found topresentupto6Klowertemperaturethantheconventionalgreypavementmaterials.Fig.13,presentsthepredictedspatial distributionofthesurfacetemperaturesineachsub-area(14:00,14/06/2015)fortheprevious(conventional),current(cool aged)andideal(coolcleaned)conditionverticallyarranged.Thelasthorizontalsetdepictsthespatialdistributionofabsolute differencesinsurfacetemperaturesbetweencoolcleanedandconventionalmaterials. Asconcernsthedistributionoftheambienttemperatureintheconsideredarea,simulationshaveshownthattheapplication of the reflective pavements can significantly reduce the local air temperature. When the non aged asphaltic materials, (SR=0.35) and the cool pavements are considered, cool scenario, the average maximum ambient temperature drop was close to 1.5◦C. For the conventional scenario, the ambient temperature at 1.5m height is found to range between 32.9◦C Table3 Measuredandpredictedsurfacetemperaturedifferencesofconventionaland coolasphaltforthefirstsubarea. Time Asphalttemperature(◦C) DTConvmeasured DTConvpredicted Cool Cool 12:00 7.3 7.4–7.9 14:00 8.2 8.2–9.0

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.