ebook img

Using Computer Simulation to Study Hospital Admission and Discharge Processes PDF

100 Pages·2017·1.15 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Using Computer Simulation to Study Hospital Admission and Discharge Processes

UUnniivveerrssiittyy ooff MMaassssaacchhuusseettttss AAmmhheerrsstt SScchhoollaarrWWoorrkkss@@UUMMaassss AAmmhheerrsstt Masters Theses 1911 - February 2014 2013 UUssiinngg CCoommppuutteerr SSiimmuullaattiioonn ttoo SSttuuddyy HHoossppiittaall AAddmmiissssiioonn aanndd DDiisscchhaarrggee PPrroocceesssseess Edwin S. Kim University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Part of the Health and Medical Administration Commons, Industrial Engineering Commons, and the Operational Research Commons Kim, Edwin S., "Using Computer Simulation to Study Hospital Admission and Discharge Processes" (2013). Masters Theses 1911 - February 2014. 1130. Retrieved from https://scholarworks.umass.edu/theses/1130 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. USING COMPUTER SIMULATION TO STUDY HOSPITAL ADMISSION AND DISCHARGE PROCESSES A Thesis Presented By EDWIN S. KIM Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH September 2013 Department of Mechanical and Industrial Engineering © Copyright by Edwin S. Kim 2013 All Rights Reserved USING COMPUTER SIMULATION TO STUDY HOSPITAL ADMISSION AND DISCHARGE PROCESSES A Thesis Presented By EDWIN S. KIM Approved as to style and content by: Hari Balasubramanian, Chair Philip Henneman, Member Ana Muriel, Member Donald L. Fisher, Department Head Department of Mechanical and Industrial Engineering ACKNOWLEDGMENTS I’d like to first thank my Lord and savior Jesus Christ for giving me the opportunity, strength, and ability to pursue this research topic. I have been blessed in so many ways and hope to glorify him through all that I do. My thesis advisers Professor Hari Balasubramanian and Dr. Philip Henneman have from the beginning been wonderful in their guidance throughout this process. I am so grateful for their advice and my thesis would not have finished without their integral support. I would like to also take the time to acknowledge Professor Ana Muriel for her helpful comments and being on my committee. To my family, my brother, mother, and father, my greatest support group, I am so thankful for the love you have given me. I cannot express in words my gratitude. I would like to also thank all of my peers, who have always been there and have made special bonds together. I am truly blessed to have such wonderful people in my life. Thank you all. iv ABSTRACT USING COMPUTER SIMULATION TO STUDY HOSPITAL ADMISSION AND DISCHARGE PROCESSES SEPTEMBER 2013 M.S.I.E.O.R., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by Professor Hari Balasubramanian Hospitals around the country are struggling to provide timely access to inpatient beds. We use discrete event simulation to study the inpatient admission and discharge processes in US hospitals. Demand for inpatient beds comes from two sources: the Emergency Department (ED) and elective surgeries (NonED). Bed request and discharge rates vary from hour to hour; furthermore, weekday demand is different from weekend demand. We use empirically collected data from national and local (Massachusetts) sources on different-sized community and referral hospitals, demand rates for ED and NonED patients, patient length of stay (LOS), and bed turnover times to calibrate our discrete event simulation model. In our computational experiments, we find that expanding hours of discharge, increasing the number of days elective patients are admitted in a week, and decreasing length of stay all showed statistically significant results in decreasing the average waiting time for patients. We discuss the implications of these results in practice, and list the key limitations of the model. v TABLE OF CONTENTS Page ABSTRACT ..................................................................................................................................... v LIST OF TABLES .......................................................................................................................... ix LIST OF FIGURES ......................................................................................................................... x CHAPTER 1. INTRODUCTION ...................................................................................................................... 1 1.1 Motivation ........................................................................................................................ 1 1.2 Background ...................................................................................................................... 1 1.3 Discrete Event Simulation ............................................................................................... 2 1.4 Problem of Description .................................................................................................... 3 2. LITERATURE REVIEW ........................................................................................................... 6 2.1 Admission Scheduling ..................................................................................................... 6 2.2 Elective Admission .......................................................................................................... 9 2.3 Emergency Department ................................................................................................. 11 2.4 Computer simulation in health care processes ............................................................... 13 3. METHODOLOGY ................................................................................................................... 16 3.1 Baseline parameters ....................................................................................................... 16 3.1.1 Replication Parameters .......................................................................................... 16 3.1.1.1 Number of Replications ................................................................................ 17 3.1.1.2 Warm Up Period .............................................................................................. 17 3.1.1.3 Replication Length ............................................................................................ 19 3.1.1.4 Replication Start Date and Base Time Units..................................................... 21 3.1.2 Uncontrollable Parameters ..................................................................................... 21 3.1.2.1 Type of Hospital ............................................................................................... 22 3.1.2.2 Hospital Patient Make Up ................................................................................. 23 vi 3.1.2.3 Length of Stay (LOS) ........................................................................................ 24 3.1.2.4 Weekly Arrival Rate ......................................................................................... 28 3.1.2.5 ED Patient Arrival Distribution ........................................................................ 29 3.1.3 Controllable Parameters (CP) ................................................................................ 35 3.1.3.1 Number of Beds ................................................................................................ 35 3.1.3.2 NonED Admission Rates .................................................................................. 36 3.1.3.3 Patient Discharge Hours.................................................................................... 38 3.1.3.4 Bed Turnover Time ........................................................................................... 38 3.1.3.5 Patient Priority .................................................................................................. 39 3.2 Modified Parameters ...................................................................................................... 40 3.2.1 Patient Discharge Times ....................................................................................... 40 3.2.2 Allowable days of arrival for NonED patients ...................................................... 41 3.2.3 Patient length of stay ............................................................................................. 42 3.3 ARENA Model .............................................................................................................. 42 3.3.1 Patient Arrival ....................................................................................................... 43 3.3.2 Waiting for Bed Queue ......................................................................................... 44 3.3.3 Patient Receives Care in Bed ................................................................................ 47 3.3.4 Patient Discharge .................................................................................................. 47 4. RESULTS ................................................................................................................................. 49 4.1 Baseline Parameters ....................................................................................................... 49 4.2 Peaks and Valleys .......................................................................................................... 52 4.3 Patient Discharge Times ................................................................................................ 52 4.3.1 75 bed community hospital ................................................................................... 53 4.3.2 150 bed community hospital ................................................................................. 54 4.3.3 150 bed referral hospital ....................................................................................... 56 4.3.4 300 bed referral hospital ....................................................................................... 57 4.4 Allowable day of arrival for NonED patients ................................................................ 58 4.4.1 75 bed community hospital ................................................................................... 59 4.4.2 150 bed community hospital ................................................................................. 61 4.4.3 150 bed referral hospital ....................................................................................... 62 4.4.4 300 bed referral hospital ....................................................................................... 64 4.5 Patient length of stay ...................................................................................................... 65 vii 4.5.1 75 bed community hospital ................................................................................... 65 4.5.2 150 bed community hospital ................................................................................. 67 4.5.3 150 bed referral hospital ....................................................................................... 68 4.5.4 300 bed referral hospital ....................................................................................... 70 5. DISCUSSION ........................................................................................................................... 72 5.1 Summary of Results ....................................................................................................... 72 5.2 Transparency and Validation ......................................................................................... 74 5.2.1 Face Validity .......................................................................................................... 74 5.2.2 Verification ............................................................................................................ 75 5.2.3 Cross Validation ..................................................................................................... 76 5.2.4 External Validation ................................................................................................ 77 5.3 Limitations ..................................................................................................................... 78 5.3.1 Input parameters ..................................................................................................... 78 5.3.2 ARENA Limitations .............................................................................................. 80 5.3.3 System Limitations ................................................................................................ 81 6. CONCLUSION ......................................................................................................................... 83 APPENDIX: FULL ARENA MODEL .......................................................................................... 84 BIBLIOGRAPHY .......................................................................................................................... 85 viii LIST OF TABLES Table Page 1. Mass hospital percentage of admission in 2010 ....................................................................... 23 2. Baseline percent admission for community and referral hospitals ......................................... 24 3. Arrival rate chart based on hospital size ................................................................................. 29 4. Two hours with percentages of events occurring with a Poisson distribution compared to actual events during a 1 year simulation run ............................................................. 34 5. Baystate Medical Center bed cleaning time statistics ............................................................. 39 6. ED and NonED waiting times comparing hospital types using baseline values ..................... 51 7. ED and NonED wait times comparing discharge times for a 75 bed community hospital ................................................................................................... 54 8. ED and NonED wait times comparing discharge times for a 150 bed community hospital.................................................................................................. 55 9. ED and NonED patient wait time comparing discharge times for a 150 bed referral hospital ........................................................................................................ 57 10. ED and NonED patient wait time comparing discharge times for a 300 bed referral hospital ........................................................................................................ 58 11. ED and NonED wait time comparing NonED arrival schedule for a 75 bed community hospital ................................................................................................... 60 12. ED and NonED patient wait time comparing NonED arrival schedule for a 150 bed referral hospital ........................................................................................................ 63 13. ED and NonED patient wait time comparing NonED arrival schedule for a 300 bed referral hospital ........................................................................................................ 65 14. ED and NonED patient wait time comparing LOS for a 75 bed community hospital ........... 66 15. ED and NonED patient wait time comparing LOS for a 150 bed community hospital ......... 68 16. ED and NonED patient wait time comparing LOS for a 150 bed referral hospital ............... 69 17. ED and NonED patient wait time comparing LOS for a 300 bed referral hospital ............... 71 ix

Description:
hospitals, demand rates for ED and NonED patients, patient length of stay (LOS), and bed turnover times to calibrate our discrete event simulation model. In our computational experiments, we find that expanding hours of discharge, increasing the number of days elective patients are admitted in a we
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.