Using catch-per-unit-effort data to solve spatial problems in Orange Roughy abundance estimates by Max Schofield Athesis submittedtotheVictoriaUniversityofWellington infulfilmentofthe requirementsforthedegreeof MasterofScience inBiologicalSciences. VictoriaUniversityofWellington 2015 Abstract This thesis describes a thorough analysis of the Andes Complex orange roughy fishery, which started in 1991 and continues to date. The Andes Complex orange roughy fishery displays a rapid initial decline in catch rate, followed by a prolonged period of relatively stable catch rate. This trend is the classic feature of a hyperdepletion catch rate. The trends in the observed Andes Complex orange roughy catch rates were explored through the development of eight modified Schaefer Surplus Production Models(SPM).Eachmodelappliedahypothesisaboutamechanism catal- ysing the observed trend of the fishery. The SPM was modified by ei- ther adding new information to the model, or an additional parameter. The fits of the modified models were optimised to elucidate values of un- known parameters in the SPM, and these were used to create estimated abundance indicies for each model. Then I compared each index to the observed abundance index (catch rate), derived following an Exploratory Analysis. The best candidate models, which had the smallest likelihoods, BIC values, and best visual fits, were those assuming population growth rate changed midway through the fishery, or that the population size de- creasedfollowinghabitatdamage(fromtrawling). ii Acknowledgments I would like to thank MPI (Ministry for Primary Industries) and NIWA (National Institute of Water and Atmospheric Research) for their support ofmypost-graduatestudythroughtheprovisionofapost-graduateschol- arship in Quantitative Fisheries Science. I am eternally greatful for the guidance and advice provided by my two supervisors Matt Dunn and Nokuthaba Sibanda. Thanks to Craig for coming along for the ride and help when I hit a wall. Thanks to Claudia for your support and encour- agement. Finally,thankstoMumandDadforyourhelpallalongtheway. iii iv ACKNOWLEDGMENTS Contents Acknowledgments iii 1 Introduction 3 1.1 CatchPerUnitEffort . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 SpatialStructureofFishPopulations . . . . . . . . . . . . . . 10 1.3 OrangeRoughy . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 ObjectiveandApproach . . . . . . . . . . . . . . . . . . . . . 17 1.5 HypothesesforStockStructure . . . . . . . . . . . . . . . . . 18 2 ModelStructureandEstimationMethods 21 2.1 SurplusProductionModel . . . . . . . . . . . . . . . . . . . . 21 2.1.1 SchaeferPopulationGrowthModel . . . . . . . . . . 23 2.1.2 ModelEquations . . . . . . . . . . . . . . . . . . . . . 27 2.1.3 ModelErrors . . . . . . . . . . . . . . . . . . . . . . . 31 2.2 MaximumLikelihoodEstimation . . . . . . . . . . . . . . . . 34 2.3 ParameterEstimation . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 GeneralisedLinearModels . . . . . . . . . . . . . . . . . . . . 39 3 ExploratoryAnalysisoftheAndesFishery 43 v vi CONTENTS 3.1 AndesComplex . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3 HistoryoftheAndesFishery . . . . . . . . . . . . . . . . . . 46 3.4 TemporalStructureoftheAndesFishery . . . . . . . . . . . 48 3.5 Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.6 Subareas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.7 GeneralisedLinearModeling . . . . . . . . . . . . . . . . . . 59 3.8 AndesModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.8.1 BinomialModel . . . . . . . . . . . . . . . . . . . . . . 62 3.8.2 NormalModel . . . . . . . . . . . . . . . . . . . . . . 65 3.8.3 CombinedModel . . . . . . . . . . . . . . . . . . . . . 68 3.8.4 FinalModel . . . . . . . . . . . . . . . . . . . . . . . . 72 4 ModelFittingandComparison 77 4.1 ModelAssessment . . . . . . . . . . . . . . . . . . . . . . . . 77 4.1.1 InformationCriteria . . . . . . . . . . . . . . . . . . . 77 4.1.2 ConfidenceIntervalsandLikelihoodProfiles . . . . . 79 4.1.3 VisualAssessment . . . . . . . . . . . . . . . . . . . . 81 4.2 HypothesisedModels . . . . . . . . . . . . . . . . . . . . . . . 82 4.2.1 ClosedPopulationModel . . . . . . . . . . . . . . . . 82 4.2.2 TheChangingGrowthModel . . . . . . . . . . . . . . 87 4.2.3 TheAlteredEnvironmentModel . . . . . . . . . . . . 89 4.2.4 TheDisturbanceModel . . . . . . . . . . . . . . . . . 94 4.2.5 TheHabitatDegradationModel . . . . . . . . . . . . 96 4.3 ModelEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . 101 5 Discussion 105 CONTENTS vii 6 Appendix 115 6.1 AppendixA:Rcode . . . . . . . . . . . . . . . . . . . . . . . 115 6.1.1 Example: UnweightedHabitatDegradationModel . 115 6.2 AppendixB:Likelihoodprofiles . . . . . . . . . . . . . . . . . 121 6.2.1 ChangingGrowthModel . . . . . . . . . . . . . . . . 121 6.2.2 UnweightedHabitatDegradationModel . . . . . . . 122 viii CONTENTS
Description: