ebook img

Use of Coulomb scattering for determining neutrino energies with MACRO PDF

4 Pages·0.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Use of Coulomb scattering for determining neutrino energies with MACRO

ProceedingsofICRC2001:1 c CopernicusGesellschaft2001 ICRC 2001 (cid:13) Use of Coulomb scattering for determining neutrino energies with MACRO 2 0 M.SiolifortheMACROCollaboration 0 Universita`diBolognaandINFN-SezionediBologna,Italy 2 n a Abstract. An estimate of the energy of neutrino-induced system(Ahlen,1993),whichprovidesthemuoncoordinates J muonsinMACROisprovidedbyamultipleCoulombscat- on a projected view. The other complementaryview of the 9 tering measurement. The MACRO original upward-muon trackingsystem(the“strip”view)cannotbeusedforthispur- 1 datasamplehasbeensubdividedaccordingtothereconstructed posesincethespacialresolutionistoopoor. v muon energy. Data in each subset are then compared with Theprojecteddisplacementofarelativisticmuonwithen- 6 expectedfluxesfromatmosphericneutrinos. Theresultsare ergyE travellingforadistanceycanbewrittenas: µ 1 interpretedintermsofneutrinooscillations. 0 1 1 13.6 10−3GeV X σMS y · (1+0.038ln(X/Xo))(1) 0 x ≃ √3 pβc rXo 2 0 1 Introduction wherepisthemuonmomentum(inGeV/c)andX/Xoisthe / x amountofcrossedmaterialintermsofradiationlengths. In MACRO can be used as a neutrino detector by measuring e MACRO,amuoncrossingthewholeapparatushas - neutrinoinducedmuonevents. Fromthestudyoftheupgo- p X/Xo 25/cosθ and y 480/cosθ cm, giving, on the ing muon deficit and from the distortion of the relative an- ≃ ≃ e vertical, σMS 10 cm/E(GeV). The muon energy estima- h gular distribution, MACRO provided evidence for neutrino x ≃ tion can be performed up to a saturation point, occurring : oscillations (Ahlen, 1995). The tagging of the neutrino in- v whenσMS iscomparablewiththedetectorspaceresolution. duced events was performed using a time-of-flight (TOF) x i The MACRO streamer tube system, with a cross section of X technique. The results of these studiesare presentedat this (3 3)cm2,providesaspatialresolutionofσ 3cm/√12 r conference in Montaruli, 2001 for the high energy sample × ≃ ≃ a 1cm. Therefore,themuonenergyestimationthroughMCS andinSpurio,2001forthelowenergysample. ispossibleupto 10GeV/√cosθ. SincetheoscillationprobabilitydependsontheratioLν/Eν, A first energy≃estimation has been presented in Bakari, where L is the distance travelled by neutrinos inside the ν 2001,wherethefeasibilityofthisapproachwasshown. The earthandE istheneutrinoenergy,anestimateofthisratio ν deflection of the muons inside the detector depends on the isfundamentalforanyoscillationanalysis. Forhighenergy muonenergyandwasmeasuredusingthedigitalinformation muonsL isproperlymeasuredbyMACROusingtherecon- ν ofthelimitedstreamertubesystem. UsingMonteCarlore- structedzenithangleofthetrackedmuon. AsfarastheE ν sults to infer a muon energy from its scattering angle, data isconcerned,partoftheneutrinoenergyiscarriedoutbythe were divided into three subsamples with different average hadroniccomponentproducedintherockbelowthedetector muonenergyandfivesubsampleswithdifferentaveragevalue whiletheenergycarriedoutbythemuonisdegradedinthe of L /E . The measured event rate vs. L /E is in good propagation up to the detector level. Nevertheless, Monte ν ν ν ν agreementwiththeexpectations,assumingneutrinooscilla- Carlo simulations show that the measurement of the muon tionswithparameters∆m2=2.5 10−3eV2andsin22θ=1. energyatthedetectorlevelstillpreservesinformationabout × Since the interesting energy region for atmospheric neu- theoriginalneutrinoenergy. trinooscillationstudiesspansfrom 1GeVuptosometens Since MACRO is not equipped with a magnet, the only ≃ of GeV, it is important to improve the spatial resolution of waytoinferthemuonenergyisthroughthemultipleCoulomb thedetectortopushthesaturationpointashighaspossible. scattering (MCS) of muons in the 25 radiation lengths ≃ WeimprovedtheMACROspatialresolutionexploitingthe (Xo)ofdetector. Forthispurpose,weusethestreamertube TDCs of the MACRO QTP system to operate the limited Correspondenceto: [email protected] streamertubes in driftmode; first results of this study have 2 beenpresentedinScapparone,2001.TheMACROQTPsys- temisequippedwitha6.6MHzclockwhichcorrespondstoa 0.16 TDCbinsizeof∆T=150ns.AltoughttheMACROstreamer U) A. MACRO data toulubteiso,nwahsegnooopdearsatσedi2n50dµrimftm(Boadttei,stcoanni,r2ea0c0h1)a,isnpaMciAalCrReOs- nts (0.14 (QTP-TDCs) e ≃ v the main limitation comes from the TDC bin size. The ex- e pectedultimateresolutionistherefore er of 0.12 Monte Carlo σ Vdrift ∆T/√12 2mm, where Vdrift 4 cm/µsis the mb (QTP-TDCs) ≃ × ≃ ≃ u driftvelocity. N 0.1 SincetheQTPelectronicswasdesignedforslowmonopole MACRO data analysis,inordertofullyunderstandtheperformanceofthe 0.08 (no QTP-TDC) QTP TDCs in this context and to measure an absolute en- ergywe did a calibrationat the CERN PS-T9 test beam. A 0.06 slice of the MACRO detectorwas reproducedin detail: ab- sorbersmadeofrockexcavatedintheGranSassotunnel,like 0.04 thoseofMACRO,wereused. FollowingtheMACROgeom- etry,thetrackingwasperformedby14limitedstreamertube chambers,operatedwiththeMACROgasmixture(He(73%)/n- 0.02 pentane(27%)).InordertostudytheQTP-TDCperformance, we equippedthe detectorwith standardLecroyTDCs, with 0 -5 -4 -3 -2 -1 0 1 2 3 4 5 a bin size of250ps. Inthisway we wereableto checkthe D x (cm) linearityoftheQTP-TDCresponseandwecomputedinde- tailthedriftvelocityinsidethechambersasafunctionofthe Fig.1.DistributionoftheresidualsforMACROdata(blackpoints) distancefromthewire. Theexperimentalsetupwasexposed andforsimulateddata(continuoushistogram).Forcomparison,the to muons with energy ranging from 1 GeV up to 15 GeV. distributionofthestreamertuberesolutionusedindigitalmodeis Each QTP-TDCtime was convertedinto driftcirclesinside alsoshown(dashedhistogram). thechambers. We performeddedicatedrunsto estimatethe spaceresolutionbyremovingtherockabsorbersandwede- veloped a special tracking to fit the muons along the drift 2 Muonenergyestimation radii. The distribution of the residuals of the fitted tracks showed a σ 2 mm, demonstrating the successful use of For the muon energy estimation we followed a neural net- ≃ the QTP-TDCs to operate the streamer tube system in drift work (NN) approach. We chose JETNET 3.0, a standard mode. package with a multilayer perceptron architecture and with InordertoimplementthistechniqueintheMACROdata, back-propagation updating. The NN has been configured we used downgoing muons crossing the whole apparatus, with7inputvariablesand1hiddenlayerandwechoosethe muonswhose average energyis around250 GeV. Since we Manhattanupgradingfunction.Foreachmuontheinputvari- were going to consider resolution of the order of few mil- ablesconsideredare: limetersweusedmorethan15milliondowngoingmuonsto -theaverageoftheresiduals; alignthewirepositionsusinganiterativesoftwareprocedure. -themaximumoftheresiduals; Afterthealignment,aresolutionofσ 3mmwasobtained. -thesigmaoftheresiduals; ≃ Thisisafactor3.5betterthanthestandardresolutionofthe -thedifferenceoftheresidualsofthethreefarthesthitsalong streamertubesystemusedindigitalmode(Fig. 1). Inorder thetrack; to compare such resolution with Monte Carlo expectations, -theslopeandinterceptofthe“progressivefit”. we properly inserted inside the simulation code GMACRO As far as the “progressive fit” is concerned, it is defined thedriftvelocitymeasuredwiththetestbeam. Thedistribu- asthefitoftheabsolutevalueoftheresidualsasa function tionoftheMACRO downgoingmuonresidualsisshownin ofthenumberoflimited streamertubeplanescrossed. The Fig. 1 (black circles) together with the GMACRO simula- slopeandtheinterceptofthisfitareverysensitivetolowen- tion(continuousline). Inthesameplotwesuperimposedthe ergymuons.Whileforhighenergymuonstheabsolutevalue residualsdistributionobtainedwithstreamertubesindigital oftheresidualsasafunctionofthecrossedplanenumberis mode(dashedline). roughlyconstant(smallslope), fora low energymuonit in- Thedifferencebetweentheresolutionobtainedattestbeam creases,asthemuonislosingarelevantfractionofitsinitial (σ 2mm)withrespecttothatobtainedwithMACROdata energy. The NN was trained using a special set of Monte ≃ (σ 3mm),isfullyunderstoodandcomesfromsystematic Carloeventswithknowninputenergy,crossingthedetector ≃ effects such as gas mixture variations during the runs, the atdifferentzenithangles. presence of δ rays produced in the rock absorbers causing InFig. 2weshowtheaverageoutputoftheNNasafunc- earlierstopstoQTP-TDCsandtheresidualmultiplescatter- tionoftheresidualmuonenergyjustbeforeenteringthede- ingsufferedbythelowenergytailofdowngoingmuons. tector (top) and of the neutrino energy (bottom). The out- 3 ut0.35 ear 6 ear14 Outp 0.3 s/y 5 s/y12 N 0.25 nt nt10 N e 4 e 0.2 v v 8 e 3 e 0.15 6 0.1 2 4 0.05 1 2 0 0 0 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -1 -0.9 -0.8 -0.7 -0.6 -0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 low medium low Log10 Em(GeV) cosq cosq ut0.35 ar ar14 utp 0.3 ye 7 ye12 N O0.25 ts/ 6 ts/10 N n 5 n 0.2 e e 8 v 4 v e e 0.15 6 3 0.1 2 4 0.05 1 2 0 0 0 0 0.5 1 1.5 2 2.5 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -1 -0.9 -0.8 -0.7 -0.6 -0.5 Log10 En(GeV) medium high cosq high cosq Fig.2.AverageNNoutputasafunctionofthemuonenergy(Monte Fig. 3. Zenith angle distributions for upward going muons in Carlosimulation). fourenergywindows(blacksquares). Rectangularboxesshowthe MonteCarloexpectationwiththeno-oscillationhypothesis(statis- ticalerrorsplus17%systematicscaleuncertaintyontheνµflux). putoftheNNincreaseswiththemuonresidualenergyupto parton distributions (Gluck, 1995). The propagation of the E 40GeV,correspondingtoaneutrinoenergyE 200 µ ν ≃ ≃ muonsfromtheinteractionpointuptothedetectorlevelhas GeV. beendoneusingtheFLUKA99package(Fasso`,1995),while themuonsimulationinsidethedetectorwasperformedwith GMACRO(theGEANT3.21baseddetectorsimulation).For 3 Dataanalysis each muon crossing the apparatus, the complete history of the event was recorded (neutrino energy, interaction point, Forthisanalysis,weusedthewholesampleofupgoingmuon muonenergyetc.). events collected with the upperpart of MACRO (Attico) in fulloperation,foratotallivetimeof5.5years.Weconsidered Should the upgoing muon deficit and the angular distri- upgoing muons selected by the TOF system and the muon bution distortion (with respect to the Monte Carlo expecta- tracksreconstructedwiththestandardMACROtracking.We tion) pointed out by MACRO come from neutrino oscilla- then selected hits belonging to the track and made from a tionswithparameters∆m2 = (10−3eV2)andsin22θ 1, O ≃ singlefiredtube,toassociateunambiguouslytheQTP-TDC such deficit and such angular distribution distortion would timeinformation.Spuriousbackgroundhitshavebeenavoided notmanifestatallneutrinoenergies. Theeffectisexpected byrequiringatimewindowof2µsaroundthetriggertime. tobestrongeratlowneutrinoenergies(E 10GeV)andto ≤ Finally, we selected events with at least four streamer tube disappearathigherenergies(E 100GeV).WeusedtheNN ≥ planes with valid QTP-TDC data. We fitted the drift cir- toseparatefourdifferentneutrinoenergyregionswhoseme- clesusingthesametrackingdevelopedtoanalyzetestbeam dianenergyisrespectively12GeV(low),20GeV(medium- muons.Aftertheselectioncutsquotedabove348eventssur- low),50GeV(mediumhigh)and102GeV(high). InFig. 3 vived,givinganoverallefficiencyofabout50%. weshowthezenithangledistributionsoftheupgoingmuon We used the informationprovidedby the neuralnetwork events in the four energy regions selected compared to the toseparatetheupgoingmuonsintodifferentenergyregions expectations of Monte Carlo simulation, assuming the no- and to study therein the oscillation effects. We studied the oscillationhypothesis.Itisevidentfromtheplotsthatatlow zenithangledistributionsoftheupgoingmuoneventsinfour energyastrongdisagreementbetweendataandMonteCarlo regionswithdifferentmuonenergy,selectedaccordingtothe (no-oscillationhypothesis)ispresent,whiletheagreementis NNoutput.Thesameselectionhasbeenappliedtosimulated restoredwithincreasingneutrinoenergy. events. The correspondingχ2-probabilitiesfor the no-oscillation TomakeacomparisonbetweenrealdataandMonteCarlo hypothesisinthesefourwindowsarerespectively1.8%(low), expectations,weperformedafullsimulationchainbyusing 16.8%(medium-low),26.9%(medium-high)and87.7%(high): theBartolneutrinoflux(Agrawal,1996)andtheGRV94DIS theχ2/DoFvaluesareclearlyrunningwiththeneutrinoen- 4 1.2 nts Constant 501.8 sc) of eve600 MSiegamna -0.18 304.6E1-9091 C(no o ber a/M 1 m500 at u D N 0.8 400 0.6 300 0.4 200 100 0.2 0 0 -4 -3 -2 -1 0 1 2 3 4 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 D Log (L/E)/Log (L/E) Log L(Km)/E(GeV) 10 n n 10 n n 10 n n Fig.4.Resolutiononthereconstructionoftheratiolog10(Lν/Eν) Fig.5.Data/MC(nooscillation)asafunctionoftheratioLν/Eν. fromtheNNoutput. weperformedastudyintermsofL /E . Alsointhiscase, ν ν ergy,spanningfrom13.7/5to 1.8/5. Theχ2 hasbeencom- the observed transition from 1 to 0.5 in the ratio of data to putedusingonlytheangularshape. MonteCarlopredictionistheoneexpectedfromtheneutrino Finally, we tried to get information on the ratio L /E . oscillation hypothesis with oscillation parameters ∆m2 = ν ν TheoutputoftheNNwascalibratedonaneventbyeventba- (10−3eV2)andsin22θ=1. O sistohavealinearresponseasafunctionoflog10(Lν/Eν). Theobtainedresolutionisgivenintermsof∆(log10(Lν/Eν))/ References log10(Lν/Eν), where∆log10(Lν/Eν) isthe differencebe- tween the true and the reconstructed ratio, shown in Fig. Ahlen, S. et al, MACRO Collaboration, Phys. Lett. B357 (1995) 4. This result has been used to evaluate the proper binning 481; Ambrosio, M. et al., MACRO Collaboration, Phys. Lett. for thedistributionDATA/MonteCarlo (i.e. the oscillation B434(1998)451. probability) as a function of log10(Lν/Eν). This distribu- Ahlen,S.etal,MACROCollaboration,Nucl.Instr.&MethA324 tionisplottedinFig. 5. Thetransitionfrom1to0.5isclear (1993)337. andshowsagoodagreementwiththeoscillationprobability Bakari, D. et al, Advanced Nato Workshop, Oujda, Morocco, functionweexpectwiththeparametersquotedabove. (2001),hep-ex/0105087. Battistoni, G. et al., Accepted by Nucl. Instr. & Meth, hep- physics/0105099. Fasso´, A. et al., An update about FLUKA, Proc. 2nd workshop 4 Conclusions on Simulating Accelerator Radiation Environment, SARE-2, CERN-Geneva,9-11,October,1995. The sample of upward through-going muons measured by Gluck,M.etal,Z.Phys.C67(1995)433. MACROhasbeenanalysedintermsofneutrinooscillations Montaruli,T.,atthisConference. usingmultipleCoulombscatteringtoinfermuonenergy.The Scapparone, E., Advanced Nato Workshop, Oujda, Morocco, improvement of the spatial resolution obtained by exploit- (2001). ingtheTDCscontainedintheQTPelectronicsextendedthe Spurio,M.,atthisConference. muon residual energyreconstruction up to 40 GeV (cor- ≃ respondingto 200GeVfortheneutrinoenergy). Adedi- ≃ catedrunattheCERNPS-T9testbeamallowedustocheck theMACROQTP-TDCsandshowedthefeasibilityofoper- ating the limited streamer tubes in driftmode. The angular distributionoftheupwardgoingmuonsamplehasbeensub- dividedintofourenergywindows,showingtheenergytrend expectedfromtheneutrinooscillationhypothesis.Moreover,

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.