ebook img

USE OF BICARBONATE SALTS IN ALGAL GROWTH FOR ENHANCEMENT OF LIPID CONTENT ... PDF

132 Pages·2016·1.89 MB·English
by  PedersenTodd
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview USE OF BICARBONATE SALTS IN ALGAL GROWTH FOR ENHANCEMENT OF LIPID CONTENT ...

USE OF BICARBONATE SALTS IN ALGAL GROWTH FOR ENHANCEMENT OF LIPID CONTENT by Todd Christian Pedersen A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Engineering MONTANA STATE UNIVERSITY Bozeman, Montana November 2016 ©COPYRIGHT by Todd Christian Pedersen 2016 All Rights Reserved ii DEDICATION I dedicate my thesis to Dick and Linda, whose everlasting inspiration will always determine me; and to my parents Pam and Rob, who have always been unconditionally supportive in my endeavors. iii ACKNOWLEDGEMENTS A special thanks to my committee chair, Dr. Brent Peyton, who helped provide me with the opportunity to complete a M.S. in chemical engineering. He was a patient mentor and an attentive advisor. I would also thank the other members of the committee, Dr. Robin Gerlach and Dr. Robert Gardner, who were also instrumental in providing me with an opportunity to complete a graduate degree. Dr. Gerlach was influential in adeptly educating me regarding the use analytical instruments and their maintenance. Dr. Gardner is an admired mentor, a cherished friend, and largely responsible for ingraining fundamental scientific discipline into my research through his continued close mentorship. Thanks to Dr. Egan Lohman, who was a pleasure to work with in the early days of my graduate studies and was sincerely missed for the remainder. Graduate students Karen Moll, Muneeb Rathore, and Matthew Jackson, and undergraduate students Ashley Berninghaus and James Crawford all deserve distinguished thanks. Their accommodating help in the lab was refreshing and are all admirable people to work with. Final thanks to the MSU Algal Biofuels Group for setting a high standard of research in our growing interdisciplinary collaborations, and to all the wonderful faculty and staff at the Center for Biofilm Engineering. iv TABLE OF CONTENTS 1. INTRODUCTION ...........................................................................................................1 Project Rationale ..............................................................................................................1 Background ......................................................................................................................2 Algae as a Biomass Alternative .......................................................................................4 Cultivation of Algae for Biomass ............................................................................6 Harvesting of Algal Biomass ...................................................................................7 Extraction and Conversion of Algal Biomass ..........................................................8 High pH and Alkaline Systems for Growth of Microalgae ...........................................10 2. ASSESMENT OF NANNOCHLOROPSIS GADITANA GROWTH AND LIPID ACCUMULATION WITH ENHANCED INORGANIC CARBON DELIVERY ..................................................................................................13 Contribution of Authors and Co-Authors ......................................................................13 Manuscript Information Page ........................................................................................14 Abstract ..........................................................................................................................15 Introduction ....................................................................................................................16 Materials and Methods ...................................................................................................20 Strain, Experimental, and Culturing Conditions ....................................................20 Analysis of Culture and Media Components .........................................................22 Chlorophyll Measurements ....................................................................................23 Harvesting ..............................................................................................................23 Transesterification for Fatty Acid Methyl Ester (FAME) Analysis .............................................................................23 GC-MS Analysis ....................................................................................................24 Calculations............................................................................................................25 Statistics .................................................................................................................26 Results and Discussion ..................................................................................................26 Cell Growth and Culture Density for Different Carbon Supplementation Strategies .......................................................26 Total Chlorophyll Accumulation and Degradation with Varying Carbon Supplementation .............................................34 Fatty Acid Methyl Ester (FAME) Analysis ...........................................................36 Conclusion .....................................................................................................................42 Competing Interests .......................................................................................................44 Acknowledgments..........................................................................................................45 References ......................................................................................................................46 v TABLE OF CONTENTS – CONTINUED 3. MONITORING CHLORELLA VULGARIS LIPIDS DURING BICARBONATE INDUCED LIPID ACCUMULATION USING 1H HIGH-RESOULUTION MAGIC ANGLE SPINNING (HR-MAS) NMR SPECTROSCOPY ............................................................................51 Contribution of Authors and Co-Authors ......................................................................51 Manuscript Information Page ........................................................................................52 Abstract ..........................................................................................................................53 Introduction ....................................................................................................................54 Materials and Methods ...................................................................................................57 Experimental Conditions .......................................................................................57 Strain and Culturing Conditions ............................................................................58 Analysis of Culture and Media Components .........................................................59 Dissolved Inorganic Carbon Analysis ...................................................................59 Chlorophyll Measurements ....................................................................................60 Harvesting and Centrifugation ...............................................................................60 1H HR-MAS NMR Spectroscopy ..........................................................................61 Extraction of Lipids from Dry Biomass Using Bead Beating ...............................61 Transesterification for GC-MS Analysis ...............................................................62 GC-MS Analysis ....................................................................................................63 Results and discussion ...................................................................................................64 Growth Characteristics of C. vulgaris on Different Inorganic Carbon Sources .................................................................64 1H HR-MAS NMR Monitoring of In Vivo Metabolites ........................................71 13C FAME Isotopomer Distribution.......................................................................78 Conclusion .....................................................................................................................82 Competing Interests .......................................................................................................83 Acknowledgments..........................................................................................................84 References ......................................................................................................................85 4. CONCLUSIONS............................................................................................................88 Project Outcomes ...........................................................................................................88 Nannochloropsis gaditana Bicarbonate Studies ....................................................89 Chlorella vulgaris NaH13CO Labeling Studies ....................................................90 3 Concluding Remarks ......................................................................................................91 Funding Acknowledgments ...........................................................................................92 vi TABLE OF CONTENTS – CONTINUED 5. FUTURE WORK ...........................................................................................................93 Integration of Bicarbonate Induced Lipid Production and Continuous Growth...............................................................................93 REFERENCES CITED ......................................................................................................98 APPENDICES .................................................................................................................106 APPENDIX A: Tabulated Data from N. Gaditana Studies .................................107 APPENDIX B: Supplemental Material from C. Vulgaris Studies .......................116 vii LIST OF TABLES Table Page 2.1. Experimental design for assessment of N. gaditana growth and lipid accumulation under various carbon application strategies. ....................21 2.2. N. gaditana growth and culturing characteristics when grown utilizing various carbon delivery methods .............................................................29 2.3. N. gaditana total chlorophyll content [mg L-1] and cell dry weight (CDW) [g L-1] at both nitrogen depletion and harvest (72 hours post depletion) when grown utilizing various carbon delivery methods ........................................................................................30 2.4. N. gaditana FAME profiles for cultures grown under various carbon application strategies at nitrogen depletion ...................................38 2.5. N. gaditana FAME profiles for cultures grown under various carbon application strategies at harvest (72 hours post nitrogen depletion) .........................................................................................39 3.1. Growth [cells mL-1], pH, total chlorophyll [mg L-1], dissolved inorganic carbon (DIC) [mmol C L-1], and cell dry weight [g DW L-1] of cultures of C. vulgaris at light-dark transition times over two successive diurnal cycles. .............................69 A.1. Air-1 average values ± 95% confidence interval for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................108 3 A.2. Air-2 average values ± 95% confidence interval for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................109 3 A.3. Air-3 average values ± 95% confidence interval for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................110 3 A.4. CO -1 average values ± 95% confidence interval for 2 cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................111 3 viii LIST OF TABLES – CONTINUED Table Page A.5. CO -2 average values ± 95% confidence interval for 2 cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................112 3 A.6. CO /HCO -1 average values ± 95% confidence interval 2 3 for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................113 3 A.7. CO /HCO -2 average values ± 95% confidence interval 2 3 for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................113 3 A.8. CO /HCO -3 average values ± 95% confidence interval 2 3 for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................114 3 A.9. CO /HCO -4 average values ± 95% confidence interval 2 3 for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................114 3 A.10. CO /HCO -5 average values ± 95% confidence interval 2 3 for cell density [cells mL-1], pH, nitrate concentration [mg N (NO -) L-1], and total chlorophyll [mg L-1] ...............................................115 3 ix LIST OF FIGURES Figure Page 2.1. Growth [cells mL-1] (a), pH (b), nitrate concentration [mg N (NO -) L-1] (c), and total 3 chlorophyll [mg L-1] (d) of cultures of N. gaditana grown using atmospheric air aprage ......................................................................28 2.2. Growth [cells mL-1] (a), pH (b), nitrate concentration [mg N (NO -) L-1] (c), and total 3 chlorophyll [mg L-1] (d) of cultures of N. gaditana cultured with CO ..................................................................................................32 2 2.3. Growth [cells mL-1] (a), pH (b), nitrate concentration [mg N (NO -) L-1] (c), and total 3 chlorophyll [mg L-1] (d) of cultures of N. gaditana cultured with CO and bicarbonate ........................................................................33 2 3.1. Growth [cells mL-1] (a), pH (b), nitrate concentration [mg N (NO -) L-1] (c), and dissolved 3 inorganic carbon (DIC) [mmol C L-1] (d) of cultures of C. vulgaris grown using either CO or NaHCO 2 3 under nitrogen replete conditions. ..........................................................................66 3.2. Saturated fatty acid chain accumulation monitored in C. vulgaris using 1H HR-MAS NMR and H13CO - labeling .............................73 3 3.3. Polyunsaturated fatty acid (PUFA) chain accumulation monitored in C. vulgaris using 1H HR-MAS NMR and H13CO - labeling ....................................................................................................75 3 3.4. Sucrose accumulation monitored in C. vulgaris using 1H HR-MAS NMR and H13CO - labeling ....................................................76 3 3.5. Fractional abundance of 13C labeled fatty acid chains as a function of number of added 13C labels for saturated (C16:0) fatty acid chains ........................................................................80

Description:
I dedicate my thesis to Dick and Linda, whose everlasting inspiration will Biofuels: Bicarbonate-Induced Microalgae for Biofuel and Specialty
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.