Lecture Notes in Morphogenesis Series Editor: Alessandro Sarti Denise Pumain Romain Reuillon Urban Dynamics and Simulation Models Lecture Notes in Morphogenesis Series editor Alessandro Sarti, CAMS Center for Mathematics, CNRS-EHESS, Paris, France e-mail: [email protected] More information about this series athttp://www.springer.com/series/11247 Denise Pumain Romain Reuillon (cid:129) Urban Dynamics and Simulation Models é (cid:1) é Guillaume Ch rel Cl mentine Cottineau (cid:1) Robin Cura Mathieu Leclaire é S bastien Rey-Coyrehourcq (cid:1) fi Clara Schmitt El e Swerts 123 Denise Pumain Romain Reuillon UniversitéParis I Panthéon-Sorbonne CNRS, UMR Géographie-Cités andUMRGéographie-Cités andInstitut des Systèmes Complexes Paris Paris-Ile-de-France France Paris France ISSN 2195-1934 ISSN 2195-1942 (electronic) Lecture Notesin Morphogenesis ISBN978-3-319-46495-4 ISBN978-3-319-46497-8 (eBook) DOI 10.1007/978-3-319-46497-8 LibraryofCongressControlNumber:2016956834 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgements Thatresearchwas supportedbytheadvanced grantGeoDiverCityoftheEuropean Research Council. v Contents 1 Is Urban Future Predictable?... .... .... .... .... .... ..... .... 1 1.1 Emergence .... .... ..... .... .... .... .... .... ..... .... 4 1.2 Generic Dynamic Features of Systems of Cities. .... ..... .... 6 1.2.1 The Hierarchical Differentiation of City Sizes. ..... .... 6 1.2.2 The Meta-Stability of Urban Hierarchies. .... ..... .... 7 1.2.3 A Regular Quasi-stochastic Process of Growth..... .... 8 1.2.4 Hierarchical Diffusion of Innovation Waves and Functional Specializations.... .... .... .... ..... .... 9 1.3 Variety in the Evolution of Urban Systems .... .... ..... .... 10 1.3.1 A Simplified Typology of Systems of Cities.. ..... .... 12 1.3.2 Systematic Variations in the Rhythm of Urban Growth... .... .... .... .... .... ..... .... 13 1.4 Urban Future: Models and Scenarios . .... .... .... ..... .... 14 1.4.1 Challenges in Building Scenarios About Urban Evolution ... ..... .... .... .... .... .... ..... .... 14 1.4.2 Challenges in Model Validation ... .... .... ..... .... 16 References.. .... .... .... ..... .... .... .... .... .... ..... .... 17 2 The SimpopLocal Model.. ..... .... .... .... .... .... ..... .... 21 2.1 Introduction ... .... ..... .... .... .... .... .... ..... .... 21 2.2 Purpose of SimpopLocal... .... .... .... .... .... ..... .... 21 2.3 Entities, State Variables and Scales .. .... .... .... ..... .... 22 2.4 Processes Overview and Scheduling.. .... .... .... ..... .... 23 2.4.1 Population Growth Mechanism.... .... .... ..... .... 23 2.4.2 Apply Innovation Mechanism. .... .... .... ..... .... 24 2.4.3 Create and Diffuse Innovation Mechanisms .. ..... .... 25 2.5 Initial Conditions ... ..... .... .... .... .... .... ..... .... 28 2.6 Input. .... .... .... ..... .... .... .... .... .... ..... .... 29 2.7 Running the Model for Parameter Estimates: Calibration... .... 31 vii viii Contents 2.8 Simulation Results and Return on Observations. .... ..... .... 32 References.. .... .... .... ..... .... .... .... .... .... ..... .... 34 3 Evaluation of the SimpopLocal Model.... .... .... .... ..... .... 37 3.1 Quantitative Evaluation.... .... .... .... .... .... ..... .... 37 3.1.1 Stopping Criterion.. .... .... .... .... .... ..... .... 37 3.1.2 Expectations . ..... .... .... .... .... .... ..... .... 38 3.1.3 Handling the Stochasticity.... .... .... .... ..... .... 39 3.2 Automated Calibration .... .... .... .... .... .... ..... .... 40 3.2.1 Optimization Heuristic .. .... .... .... .... ..... .... 40 3.2.2 Adaptation of NSGA2 to a Stochastic Model. ..... .... 42 3.2.3 Experimental Setup. .... .... .... .... .... ..... .... 45 3.2.4 Results . .... ..... .... .... .... .... .... ..... .... 46 3.3 Calibration Profiles.. ..... .... .... .... .... .... ..... .... 47 3.3.1 Algorithm ... ..... .... .... .... .... .... ..... .... 48 3.3.2 Guide of Interpretation .. .... .... .... .... ..... .... 51 3.3.3 Result Analysis.... .... .... .... .... .... ..... .... 52 3.4 Conclusion .... .... ..... .... .... .... .... .... ..... .... 55 References.. .... .... .... ..... .... .... .... .... .... ..... .... 55 4 An Incremental Multi-Modelling Method to Simulate Systems of Cities’ Evolution.. .... ..... .... .... .... .... .... ..... .... 57 4.1 Introduction ... .... ..... .... .... .... .... .... ..... .... 57 4.2 Methodological and Technical Framework for Multi-modelling Systems of Cities .... .... .... ..... .... 58 4.2.1 Complementary and Competing Theories .... ..... .... 58 4.2.2 A Methodology for Implementing Multi-models.... .... 59 4.2.3 Exploiting the Results of a Family of Models. ..... .... 60 4.3 A Family of Models of (Post-) Soviet Cities: MARIUS.... .... 63 4.3.1 Ordering Possible Causes of Evolution from the Most Generic to the Most Specific.. ..... .... 63 4.3.2 Implementing Modular Mechanisms.... .... ..... .... 65 4.4 Geographical Insights on (Post-) Soviet City Growth from Multi-modelling..... .... .... .... .... .... ..... .... 67 4.4.1 Mechanisms’ Performance.... .... .... .... ..... .... 68 4.4.2 Parameter Values .. .... .... .... .... .... ..... .... 69 4.4.3 Residual Trajectories.... .... .... .... .... ..... .... 71 4.5 VARIUS: A Visual Aid to Model Composition and Interpretation ... ..... .... .... .... .... .... ..... .... 73 4.5.1 Building the Model Online... .... .... .... ..... .... 74 4.5.2 Running the Model Online ... .... .... .... ..... .... 76 4.5.3 Analyzing Results Online or ‘How Close Are We?’. .... 76 4.6 Conclusion .... .... ..... .... .... .... .... .... ..... .... 77 References.. .... .... .... ..... .... .... .... .... .... ..... .... 78 Contents ix 5 Using Models to Explore Possible Futures (Contingency and Complexity).. .... .... .... .... .... ..... .... 81 5.1 Models as Artefacts of Historically Contingent Complex Systems .. .... .... ..... .... .... .... .... .... ..... .... 82 5.2 A Method to Foster Diversity in a Model Outcomes . ..... .... 84 5.2.1 The Pattern Space Exploration Algorithm: Principles and Implementation .... .... .... ..... .... 84 5.2.2 Evolutionary Methods for Parameter Space Exploration.. ..... .... .... .... .... .... ..... .... 85 5.2.3 Novelty Search .... .... .... .... .... .... ..... .... 86 5.2.4 PSE Algorithm .... .... .... .... .... .... ..... .... 86 5.3 Application to Systems of Cities. .... .... .... .... ..... .... 88 5.3.1 Order Parameters from Empirical Observation of Urban Systems Evolution Over Time. .... ..... .... 89 5.3.2 Parameter Space and Pattern Space. .... .... ..... .... 90 5.3.3 Results . .... ..... .... .... .... .... .... ..... .... 91 5.4 Conclusion: Acknowledging Historical Contingency for the Prediction of Potential Urban Futures... .... ..... .... 93 References.. .... .... .... ..... .... .... .... .... .... ..... .... 94 6 An Innovative and Open Toolbox ... .... .... .... .... ..... .... 97 6.1 Introduction ... .... ..... .... .... .... .... .... ..... .... 97 6.2 The Ant Model. .... ..... .... .... .... .... .... ..... .... 98 6.3 Embed the Model in OpenMOLE.... .... .... .... ..... .... 99 6.4 Do Repetitions . .... ..... .... .... .... .... .... ..... .... 102 6.5 Automatic Workload Distribution.... .... .... .... ..... .... 103 6.6 Expose the Variability of the Model.. .... .... .... ..... .... 103 6.7 Aggregate the Results..... .... .... .... .... .... ..... .... 104 6.8 Explore the Space of Parameters .... .... .... .... ..... .... 106 6.9 Optimization with Genetic Algorithms.... .... .... ..... .... 110 6.10 Sensitivity Analysis with the Profiles Method... .... ..... .... 112 6.11 Validation, Testing Output Diversity . .... .... .... ..... .... 115 References.. .... .... .... ..... .... .... .... .... .... ..... .... 117 Knowledge Accelerator’ in Geography and Social Sciences: Further and Faster, but Also Deeper and Wider .. .... .... ..... .... 119 Introduction Since the turn of twenty-first century, half of the population of the world lives in cities.Thisisbynomeansarevolutionoradecisiveinflexionasitwassometimes suggested by the media, because the world trend in increasing the share of urban population (that ratio is technically called the ‘urbanization rate’) has been a con- tinuous one for at least two centuries. The major significance of crossing the symbolic50%thresholdisthatcitieshavebecometheplaceswherethemajorityof people will henceforth make their living and invent their ways of life. This has already been the case for 50 years for the population of the more developed countries. It is becoming a reality for more and more inhabitants of the world. Beforetheendofthiscenturymorethanthreequartersofsomeninebillionhumans willliveincities.Theconsequenceisthatmostsocietalchallengeshavenowtobe confronted and solved within urban environments. Whatever the topic: trans- portation, pollution, production, consumption, social segregation, poverty, culture, architecture, and esthetics, it must now be thought of as an urban problem, to be managedinanurbanmilieuandsolutionshavetobeadaptedtothespecificplaces. Althoughcitiesareobviouslypartofmanyproblems(climatechange,inequality, etc.), they also represent the only viable solution to such problems (Carter et al. 2015), and they already have started solving them. Indeed, although they were never coordinated by any dedicated institution in a global and continuous way, cities have self-organized throughout the course of history into systems of cities. Becausetheyareconnectedbymultiplenetworksforexchangingmaterialgoods aswellasimmaterialinformation,systemsofcitiescouldfigureprominentlyamong themostingeniousinventionofhumansocieties.Ifonewouldconceivethemasan institution produced intentionally, systems of cities would be thought of as suc- cessful tools designed for reducing uncertainties of terrestrial environments using distantresourcesandmultiplyinginnovationfromnetworkinteractions.Fromthese repeated and increased exchanges, the systems of cities have spontaneously gen- erated significant co-evolution processes between more and more distant cities in expanding political, trade and cultural networks. Thisevolutionisnotlinearandinvolvesmanydiscontinuitiesinspaceandtime: unequalurbandevelopmentisaruleandbarrierstotradeandnewbordershavebeen xi