ebook img

UNIVERSITY OF CALIFORNIA, SAN DIEGO Linear Network Coding over Ring Alphabets A ... PDF

200 Pages·2017·1.33 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview UNIVERSITY OF CALIFORNIA, SAN DIEGO Linear Network Coding over Ring Alphabets A ...

UNIVERSITY OFCALIFORNIA, SAN DIEGO LinearNetwork Coding overRing Alphabets A dissertationsubmittedinpartial satisfactionofthe requirements forthedegreeDoctorofPhilosophy in Electrical Engineering (CommunicationTheory &Systems) by JosephMichaelConnelly Committeeincharge: ProfessorKennethZeger,Chair ProfessorYoung-HanKim ProfessorDanielRogalski ProfessorPaulSiegel ProfessorLanceSmall 2018 Copyright JosephMichael Connelly,2018 Allrightsreserved. The dissertation of Joseph Michael Connelly is approved, and it isacceptable inqualityandformforpublication onmicrofilmand electronically: Chair UniversityofCalifornia,San Diego 2018 iii TABLEOFCONTENTS SignaturePage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii TableofContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ListofFigures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii Vita. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix AbstractoftheDissertation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x Chapter1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 NetworkCoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Group,Ring,andFieldAlphabets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 ScalarLinearCodesoverFiniteFields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 VectorLinearCodesoverFiniteFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 LinearNetworkCodingoverFiniteRings . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter2 ScalarCodesandCommutativeRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.1 NetworkModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.3 OurContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 RingDominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Fundamental RingComparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 MinimizingAlphabetSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2.3 DirectProductsofRings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.4 Then-Choose-TwoNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2.5 RingsofSize p2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.3 FiniteFieldDominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 LocalRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.2 Non-Power-of-PrimeSizeRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4 IntegerPartitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.1 PartitionDivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.2 Characterizing MaximalPartitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.4.3 MaximalPartitionsofShortLength . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.5 MaximalCommutativeRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 2.5.1 MultipleMaximalRingsofaGivenSize. . . . . . . . . . . . . . . . . . . . . . . 47 2.6 OpenQuestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 iv Chapter3 VectorCodesandNon-CommutativeRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.1 LinearCodesOverModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.1.2 OurContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.1.3 Comparisons ofModules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 CommutativeandNon-CommutativeRings . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.1 ModulesandVectorLinearCodes . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.3 TheDim-kNetworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.3.1 Insufficiency ofCommutativeRings. . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.4 ModulesoftheSameSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.4.1 CommutativeRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.4.2 Non-CommutativeRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.5.1 SummaryofResults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.5.2 OpenQuestions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 3.A ProofsofLemmas3.4.12,3.4.13,and3.4.14 . . . . . . . . . . . . . . . . . . . . . . . . . 88 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Chapter4 CapacityandAchievableRateRegions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.1.1 Modules, LinearFunctions, andTensorProducts . . . . . . . . . . . . . . . . . 95 4.1.2 NetworkCodingModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.1.3 LinearityoverFiniteRingsandModules. . . . . . . . . . . . . . . . . . . . . . . 101 4.1.4 RateRegions,Capacity,andSolvability . . . . . . . . . . . . . . . . . . . . . . . 101 4.1.5 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.1.6 MainResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2 Fractional andVectorCodesoverModules . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2.1 Fractional EquivalentNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Fractional Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.2.3 MatrixRingsoverFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.3 LinearRateRegionsoverFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 4.3.1 ComparingLinearRateRegionsoverDifferentFields. . . . . . . . . . . . . . 115 4.4 LinearRateRegionsoverRings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 4.4.1 ComparingLinearCapacities overDifferentRings . . . . . . . . . . . . . . . . 119 4.4.2 AsymptoticSolvability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 4.5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Chapter5 AClassofNon-LinearlySolvableNetworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.1.1 NetworkCodingModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.1.2 PreviousWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 v 5.1.3 OurContributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.2 NetworkN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 0 5.3 NetworkN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 1 5.4 NetworkN (m,w) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 2 5.5 NetworkN (m ,m ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 3 1 2 5.6 NetworkN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4 5.6.1 Solvability ofN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 4 5.6.2 LinearSolvability ofN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 4 5.6.3 CapacityandLinearCapacityofN (m) . . . . . . . . . . . . . . . . . . . . . . . 163 4 5.6.4 SizeofN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 4 5.7 OpenQuestions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 5.A CapacityProofsofN ,N andN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 1 2 3 5.A.1 N CapacityProof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 1 5.A.2 N CapacityProof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 2 5.A.3 N CapacityProof. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Chapter6 BigPictureDiscussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.1 CanaNetworkbeLinearlySolvableoverRingsbutnotFields?. . . . . . . . . . . . . 187 6.2 Whatisthe“Best”AlphabetofaGivenSizeforLinearCoding? . . . . . . . . . . . . 188 6.3 Whatisthe“Best”AlphabetforLinearCodingonaGivenNetwork?. . . . . . . . . 188 6.4 OverWhatAlphabetSizesisaGivenNetworkSolvable? . . . . . . . . . . . . . . . . . 188 6.5 CantheLinearCapacityofaNetworkbeIncreased UsingRings? . . . . . . . . . . . 189 vi LISTOFFIGURES Figure1.1: TheButterflyNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure1.2: Then-Choose-TwoNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure1.3: TheM Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure1.4: TheDiabolicalNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Figure2.1: Asummaryoftheresultsinthischapterforafixednetwork . . . . . . . . . . . . . . . . . . 19 Figure2.2: Asummaryoftheresultsinthischapterforafixedalphabet size . . . . . . . . . . . . . . . 19 Figure2.3: TheChar-mNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Figure2.4: Then-Choose-TwoNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure2.5: TheTwo-SixNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Figure2.6: Themaximalpartitions ofk=1,2,...,30underpartition division. . . . . . . . . . . . . . . 50 Figure3.1: TheFanoNetwork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure3.2: Then-Choose-TwoNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Figure3.3: TheDim-kNetwork. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure3.4: TheM Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Figure3.5: Atrivialnetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Figure4.1: TheButterflyNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Figure4.2: The(k ,k ,n)-ButterflyNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 x y Figure4.3: TheChar-mNetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Figure5.1: Summaryofthenetworksconstructed inthischapter . . . . . . . . . . . . . . . . . . . . . . . 132 Figure5.2: Anetworkbuilding block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Figure5.3: ThenetworkN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 0 Figure5.4: ThenetworkN (m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 1 Figure5.5: ThenetworkN (m,w). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 2 Figure5.6: ThenetworkN (m ,m ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 3 1 2 vii ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor, Ken Zeger, for his guidance, support, and inspiration. I am indebted to him for the many opportunities he has presented me with and for his efforts to help me become a better researcher. Ken’s passion for research, teaching, and mathematics is highly contagious, andIhopetomaintain asimilarenthusiasm throughout mycareer. Iamgrateful toYoung-Han Kim,PaulSiegel,DanRogalski,andLanceSmallforserving onmycommitteeandtakingthetimetoread andeditthisdissertation. IthankallofthefriendsIhavemadeandthosewhomIhaveworkedwithatUCSD for making graduate school a memorable and rewarding experience. I am thankful to Richard Sahara and MarcRiedelforbothinspiringandencouragingmetopursuegraduateeducation. IalsothankJonHamkins forhismentorshipandhelpinmakingmytimeatJPLasenjoyable asitwas. Myparentshaveprovidedmewiththemeansandtheencouragementtopursuemygoals,nomatter wheretheytakeme. Iamthankful fortheirunconditional support throughout mylife, particularly overthe past 5 years. Finally, I thank my fiance´e Allison Flickinger, for her patience and her willingness to put up with me through the highs and lows of writing this dissertation. This work would not have been possible wereitnotforherloveandunwaiveringsupport. Thechaptersofthisdissertationconsistofpublishedandsubmittedjournalarticles. Thedissertation authorwastheprimaryinvestigator andauthorofeachofthesepapers. • Chapter2isareprintofthematerialasitappearsinJ.ConnellyandK.Zeger,“Linearnetworkcoding over rings – Part I: Scalar codes and commutative alphabets,” IEEE Transactions on Information Theory,vol. 64,no. 1,pp. 274–291,January2018. • Chapter3isareprintofthematerialasitappearsinJ.ConnellyandK.Zeger,“Linearnetworkcoding overrings–PartII:Vectorcodesandnon-commutativealphabets,”IEEETransactionsonInformation Theory,vol. 64,no. 1,pp. 292–308,January2018. • Chapter 4 has been submitted for publication of the material J. Connelly and K. Zeger, “Linear ca- pacityofnetworksoverringalphabets.” • Chapter5isareprintofthematerialasitappearsinJ.ConnellyandK.Zeger,“Aclassofnon-linearly solvablenetworks,”IEEETransactionsonInformationTheory,vol. 63,no. 1,pp. 201–229,January 2017. Thisworkwassupported, inpart,bytheNationalScienceFoundation. viii VITA 2013 BachelorofElectricalEngineering, UniversityofMinnesotaTwinCities 2013 BachelorofComputerEngineering, UniversityofMinnesotaTwinCities 2013–2018 TeachingAssistant,UniversityofCalifornia, SanDiego 2014–2017 GraduateStudentResearcher, UniversityofCalifornia, SanDiego 2016 Master of Science in Electrical Engineering (Communication Theory & Systems), UniversityofCalifornia, SanDiego 2016 GraduateStudentIntern, NASAJetPropulsionLaboratory 2017 AssociateInstructor, UniversityofCalifornia, SanDiego 2018 DoctorofPhilosophyinElectricalEngineering(CommunicationTheory&Systems), UniversityofCalifornia, SanDiego 2018– Developmental Engineer, AirForceResearchLabs,NewMexico PUBLICATIONS J. Connelly and K. Zeger, “A class of non-linearly solvable networks,” Proceedings of the IEEE Interna- tionalSymposium onInformation Theory(ISIT),pp. 1964–1968, Barcelona, Spain,July10-152016. J.Connelly, “Repeat-PPM super-symbol synchronization,” IPNProgress Report vol. 42, no. 207, Novem- ber2016. J. Connelly and K. Zeger, “A class of non-linearly solvable networks,” IEEE Transactions on Information Theory,vol. 63,no. 1,pp. 201–229,January 2017. J.ConnellyandK.Zeger,“Linearnetworkcodingoverrings–PartI:Scalarcodesandcommutativealpha- bets,”IEEETransactions onInformation Theory,vol. 64,no. 1,pp. 274–291,January2018. J. Connelly and K.Zeger, “Linear network coding overrings – PartII: Vector codes and non-commutative alphabets,” IEEETransactions onInformation Theory,vol. 64,no. 1,pp. 292–308,January2018. J. Connelly and K. Zeger, “Linear capacity of networks over ring alphabets,” submitted to IEEE Transac- tionsonInformation Theory,June4,2017,revisedJanuary29,2018. ix ABSTRACT OF THEDISSERTATION LinearNetwork Coding overRing Alphabets by JosephMichaelConnelly DoctorofPhilosophyin ElectricalEngineering (CommunicationTheory &Systems) UniversityofCalifornia, San Diego,2018 ProfessorKennethZeger, Chair As connected devices play an ever-growing role in our society, there is a subsequent need for ad- vancesinmulti-usercommunicationsystems. Inanetwork,sendersandreceiversareconnectedviaaseries ofintermediate users whoshare information represented assequences ofbitsorelements ofsomeother fi- nitealphabet. Byallowinguserstotransmitfunctionsoftheirinputs,asopposedtosimplyrelayingreceived data, the information throughput of a network can be increased. Network codes in which these functions are linear are suboptimal in general but are of practical interest due to their mathematical tractability and low implementation complexity. The study of linear network coding has primarily been limited to finite field alphabets. In this work, we consider linear network codes over more general algebraically-structured alphabets, namely finite rings. Wecontrast linear network codes over finite fields, commutative rings, and non-commutative rings, and we discuss cases where non-linear codes attain higher information rates than evenverygenerallinearcodes. Ourresultsshowthatfinitefieldsare,insomesense,thebestringalphabets for linear network coding, but in certain instances, it may be advantageous to use linear coding over some otherringalphabetofthesamesize. Specifically,weproveresultsrelatedto: x

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.