ebook img

Unipotent and nilpotent classes in simple algebraic groups and Lie algebras PDF

394 Pages·2012·2.26 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Unipotent and nilpotent classes in simple algebraic groups and Lie algebras

Mathematical Surveys and Monographs Volume 180 Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras Martin W. Liebeck Gary M. Seitz American Mathematical Society Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras Mathematical Surveys and Monographs Volume 180 Unipotent and Nilpotent Classes in Simple Algebraic Groups and Lie Algebras Martin W. Liebeck Gary M. Seitz American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair Michael A. Singer Jordan S. Ellenberg Benjamin Sudakov Michael I. Weinstein 2010 Mathematics Subject Classification. Primary 20G15, 20G40, 20G41,20E45, 20E32, 17B45, 17B08. For additional informationand updates on this book, visit www.ams.org/bookpages/surv-180 Library of Congress Cataloging-in-Publication Data Liebeck,M.W.(MartinW.),1954– Unipotentandnilpotentclassesinsimplealgebraicgroupsandliealgebras/MartinW.Liebeck, GaryM.Seitz. p.cm. —(Mathematicalsurveysandmonographs;v.180) Includesbibliographicalreferencesandindex. ISBN978-0-8218-6920-8(alk.paper) 1.Linearalgebraicgroups. 2.Liealgebras. I.Seitz,GaryM.,1943– II.Title. QA179.L54 2012 512(cid:2).482—dc23 2011043518 Copying and reprinting. Individual readers of this publication, and nonprofit libraries actingforthem,arepermittedtomakefairuseofthematerial,suchastocopyachapterforuse in teaching or research. Permission is granted to quote brief passages from this publication in reviews,providedthecustomaryacknowledgmentofthesourceisgiven. Republication,systematiccopying,ormultiplereproductionofanymaterialinthispublication is permitted only under license from the American Mathematical Society. Requests for such permissionshouldbeaddressedtotheAcquisitionsDepartment,AmericanMathematicalSociety, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by [email protected]. (cid:2)c 2012bytheAmericanMathematicalSociety. Allrightsreserved. TheAmericanMathematicalSocietyretainsallrights exceptthosegrantedtotheUnitedStatesGovernment. PrintedintheUnitedStatesofAmerica. (cid:2)∞ Thepaperusedinthisbookisacid-freeandfallswithintheguidelines establishedtoensurepermanenceanddurability. VisittheAMShomepageathttp://www.ams.org/ 10987654321 171615141312 For Ann and Sheila Contents Preface xi Chapter 1. Introduction 1 Chapter 2. Preliminaries 9 2.1. Notation 9 2.2. Subgroups 13 2.3. Automorphisms and Lie algebras 15 2.4. Frobenius morphisms and the Lang-Steinberg theorem 19 2.5. Nilpotent and unipotent elements 20 2.6. Distinguished parabolic subgroups 24 2.7. Centralizers of nilpotent elements 28 2.8. Distinguished elements in characteristic zero 34 Chapter 3. Classical groups in good characteristic 39 3.1. Preliminary lemmas 40 3.2. Proof of Theorem 3.1 43 3.3. Additional information 49 Chapter 4. Classical groups in bad characteristic: statement of results 59 Chapter 5. Nilpotent elements: the symplectic and orthogonal cases, p=2 65 5.1. Indecomposables 65 5.2. Distinguished nilpotent elements 67 5.3. Distinguished normal form 69 5.4. Centralizers of nilpotent elements I: connected centralizers 71 5.5. Centralizers of nilpotent elements II: component groups 78 5.6. Orthogonal groups of odd dimension 86 5.7. Splitting 89 5.8. Labellings of some nilpotent classes 90 Chapter 6. Unipotent elements in symplectic and orthogonal groups, p=2 91 6.1. Indecomposables 91 6.2. Distinguished unipotent elements 92 6.3. A map from unipotents to nilpotents in SO(V) 93 6.4. A lemma on representations 94 6.5. Centralizers of unipotents I: connected centralizers 96 6.6. Centralizers of unipotents II: component groups 101 6.7. Splitting 109 6.8. Orthogonal groups of odd dimension 110 6.9. Labellings of some unipotent classes 110 vii viii CONTENTS Chapter 7. Finite classical groups 113 7.1. Good characteristic 113 7.2. Bad characteristic 116 Chapter 8. Tables of examples in low dimensions 119 Chapter 9. Exceptional groups: statement of results for nilpotent elements 129 Chapter 10. Parabolic subgroups and labellings 133 10.1. T-labellings and associated parabolic subgroups 133 10.2. Labellings of some distinguished classes in classical groups 136 Chapter 11. Reductive subgroups 139 Chapter 12. Annihilator spaces of nilpotent elements 153 12.1. Lemmas on representation theory 153 12.2. Annihilator spaces of distinguished nilpotent elements 156 12.3. Further results 165 Chapter 13. Standard distinguished nilpotent elements 169 13.1. Distinguished nilpotent elements corresponding to distinguished parabolic subgroups 169 13.2. Component groups 181 13.3. Subgroups J,R 201 Chapter 14. Exceptional distinguished nilpotent elements 203 Chapter 15. Nilpotent classes and centralizers in E 219 8 15.1. Preliminary lemmas 220 15.2. Proof of Theorem 15.1, I: strategy 225 15.3. Proof of Theorem 15.1, II: calculation of the centralizers 228 15.4. Proof of Theorem 15.1, III: completeness of the list 258 Chapter 16. Nilpotent elements in the other exceptional types 263 16.1. The cases where (G ,p)=(cid:54) (F ,2) or (G ,3) 263 0 4 2 16.2. The case (G ,p)=(G ,3) 267 0 2 16.3. The case (G ,p)=(F ,2) 268 0 4 16.4. Dual pairs 276 Chapter 17. Exceptional groups: statement of results for unipotent elements 281 Chapter 18. Corresponding unipotent and nilpotent elements 287 Chapter 19. Distinguished unipotent elements 299 19.1. The proof of Theorem 19.1 301 19.2. The proof of Theorem 19.2 310 Chapter 20. Non-distinguished unipotent classes 317 20.1. The case G=E ,E ,E 317 6 7 8 20.2. The case G=F , p(cid:54)=2 329 4 20.3. The case G=F , p=2 330 4 20.4. The case G=G 332 2 20.5. Proofs of the results 17.1 - 17.10 332 CONTENTS ix Chapter 21. Proofs of Theorems 1, 2 and Corollaries 3 - 8 341 Chapter 22. Tables of nilpotent and unipotent classes in the exceptional groups 351 22.1. Classes and centralizers in exceptional algebraic groups 351 22.2. Unipotent classes and centralizers in finite exceptional groups 351 22.3. The dual pairs J,R 352 Bibliography 373 Glossary of symbols 377 Index 379

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.