ebook img

Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through PDF

20 Pages·2017·14.74 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through

nutrients Article Understanding the Effect of Particle Size and Processing on Almond Lipid Bioaccessibility through Microstructural Analysis: From Mastication to Faecal Collection GiuseppinaMandalari1,2,MaryL.Parker2,MyriamM.-L.Grundy2 ID,TerriGrassby3 ID, AntonellaSmeriglio1 ID,CarloBisignano4,RobertoRaciti1,DomenicoTrombetta1 ID, DavidJ.Baer5andPeterJ.Wilde2,* 1 DepartmentofChemical,Biological,PharmaceuticalandEnvironmentalScience,UniversityofMessina, VialeSS.Annunziata,98168Messina,Italy;[email protected](G.M.);[email protected](A.S.); [email protected](R.R.);[email protected](D.T.) 2 QuadramInstituteBioscience,NorwichNR47UA,UK;[email protected](M.L.P.); [email protected](M.M.-L.G.) 3 SchoolofBiosciencesandMedicine,FacultyofHealthandMedicalSciences,UniversityofSurrey, GuildfordGU27XH,UK;[email protected] 4 DepartmentofBiomedical,Dental,MorphologicalandFunctionalImagesSciences,UniversityofMessina, ViaC.Valeria,98125Messina,Italy;[email protected] 5 U.S.DepartmentofAgriculture,AgriculturalResearchService,BeltsvilleHumanNutritionResearchCentre, Building307B,Room213,BARC-East,Beltsville,MD20705,USA;[email protected] * Correspondence:[email protected];Tel:+44-1603-255000 Received:19January2018;Accepted:9February2018;Published:14February2018 Abstract: Wehavepreviouslyreportedonthelowlipidbioaccessibilityfromalmondseedsduring digestionintheuppergastrointestinaltract(GIT).Inthepresentstudy,wequantifiedthelipidreleased duringartificialmasticationfromfouralmondmeals: naturalrawalmonds(NA),roastedalmonds (RA),roasteddicedalmonds(DA)andalmondbutterfromroastedalmonds(AB).Lipidreleaseafter mastication(8.9%fromNA,11.8%fromRA,12.4%fromDAand6.2%fromAB)wasusedtovalidate our theoretical mathematical model of lipid bioaccessibility. The total lipid potentially available fordigestioninABwas94.0%,whichincludedthefreelyavailablelipidresultingfromtheinitial sampleprocessingandthefurthersmallamountoflipidreleasedfromtheintactalmondparticles duringmastication. ParticlesizedistributionsmeasuredaftermasticationinNA,RAandDAshowed mostoftheparticleshadasizeof1000µmandabove,whereasABbolusmainlycontainedsmall particles(<850µm). MicrostructuralanalysisoffaecalsamplesfromvolunteersconsumingNA,RA, DAandABconfirmedthatsomelipidinNA,RAandDAremainedencapsulatedwithintheplant tissuethroughoutdigestion, whereasalmostcompletedigestionwasobservedintheABsample. Weconcludethatthestructureandparticlesizeofthealmondmealsarethemainfactorsinregulating lipidbioaccessibilityinthegut. Keywords: almonds;particlesize;lipidbioaccessibility;microstructuralanalysis 1. Introduction The behaviour of almonds in the gastrointestinal tract (GIT) may explain why almonds have potentialhealthbenefitsandreduceriskfactorsassociatedwithtype2diabetes,cardiovasculardisease, cancerandobesity[1–3]. Previousstudieshaveestablishedthatalmondcellwallsplayacrucialrole inregulatingnutrientbioaccessibilityintheGIT[4,5]. Theterm‘bioaccessibility’isdefinedasthe Nutrients2018,10,213;doi:10.3390/nu10020213 www.mdpi.com/journal/nutrients Nutrients2018,10,213 2of20 proportionofanutrientorphytochemicalcompound‘released’fromacomplexfoodmatrixduring digestionand,therefore,potentiallyavailableforabsorptionintheGIT.Usinganinvitroandaninvivo study,wehaverecentlydemonstratedthattestmealscontainingalmondsofdifferentparticlesizes behaveddifferently: thedegreeoflipidencapsulationaffectedtherateandextentofbioaccessibilityin theupperGIT[6]. Wehavealsodemonstratedthatmasticationofnaturalrawalmondsreleasedonly asmallproportion(7.9%)ofthetotallipidandwasonlyslightlyhigherforroastedalmonds(11.1%)[7]. Thelipidreleasefrommasticatedalmondswasincloseagreementwiththatpredictedbyatheoretical modelforalmondlipidbioaccessibility[7,8]. Usinganinvitromodelofduodenaldigestion[9],itwas observedthatadecreaseinalmondparticlesizeresultedinanincreasedrateandextentoflipolysis. Novotnyetal.[10]conductedafeedingstudyinhealthyadultstodeterminetheenergyvalue ofalmondsasarepresentativefoodfromagroupforwhichtheAtwaterfactorsmayoverestimate the energy value. They showed that only 76% of the energy contained within almonds (based on theAtwaterfactors)wasactuallymetabolised[10]. Furthermore,whencalculatingthemetabolisable energy(ME)ofwholenaturalalmonds,wholeroastedalmonds,choppedalmondsandalmondbutter, it was demonstrated that the number of calories absorbed was dependent on the form in which almondswereconsumed. Basedonthesefindings,theaimsofthepresentworkwere: (a)toinvestigatethemechanisms responsibleforthelossinobservedinvivometabolisableenergycomparedtothatcalculatedfrom nutrientcompositionusingtheAtwatergeneralfactors;thiswasperformedbymicroscopyinpost-GIT faecal samples; (b) to carry out microstructural investigations on freshly artificially “masticated” almondsamples,todeterminetheparticlesizedistributionofthe“masticated”samplesandtheextent oflipidreleaseafteroraldigestion; and(c)tofurthervalidatethemathematicalmodelpreviously developedtopredictlipidreleasefrommasticatedalmonds[8]. 2. MaterialsandMethods 2.1. AlmondandFaecalSamples Fouralmondtypesallwithbrowntestapresent(naturalrawalmonds, NA,roastedalmonds, RA, roasted diced almonds, DA and almond butter, AB) were provided by the Almond Board of California. SmoothunsaltedABwasindustriallyproducedbygrindingunskinnedroastedalmonds. Itcontained(asperlabel): fat(50%,ofwhich4.7%weresaturated),totalcarbohydrates(25%,ofwhich 12.5%weredietaryfibreand6.2%weresugars),protein(15.6%). Faecalsampleswerecollectedfrom humanswhowereparticipantsinastudytomeasurethemetabolisableenergyofthealmonds[11]. Thisfeedingstudywasacrossover,randomizedcontroltrial. Volunteers(10menand8women)were fedthe5distinctfeedingregimes(control,NA,RA,DAandAB)aspartofahighlycontrolleddiet. Duringthefeedingperiods,allmeals(usinga7-daymenucycle)forthevolunteerswerepreparedat theBeltsvilleHumanNutritionResearchCentre(theCentre)andMondaythroughFridaybreakfast anddinnerwereconsumedattheCentreundersupervisionoftheresearchinvestigators. Lunchand weekendmealswerepreparedattheCentreandpackagedforconsumptionoff-site.Foodsforallmeals andsnackswereidentical(exceptfortheformofnut). Foodforallmealswaspreparedbyweight, tothenearest1g,toproducedailymenusprovidingarangeinenergyfrom1600kcalto4000kcal. Volunteerswerefedtheenergyneededtomaintaintheirbodyweight(bodyweightwasmeasured eachmorning,MondaythroughFriday)andadjustmentstotheamountoffoodconsumedwasmade byincreasingordecreasingtheamountofallfood,proportionately,suchthatthecompositionofthe dietwasidenticalforallvolunteers,independentoftheenergytheyrequiredtomaintainbodyweight. A total of 42 g/day of each form of nut (NA, RA, DA and AB) was consumed daily with half the amountconsumedatbreakfastandtheotherhalfconsumedatdinner. Forthecontroldiet,theamount ofallfoodswasincreasedproportionatelysuchthattheenergycontentofthecontroldietwasdesigned tobeequaltothe4fourdietsthatcontainedthecontrolfoodsplusthenuts. Volunteerswererecruited from the area around the Centre and were screened to insure they met the study criteria. Briefly, Nutrients2018,10,213 3of20 subjectswerehealthyindividuals(nottakinganymedicationsorsupplementsthatmightinterfere withstudyoutcomes)withoutdentalordigestiveconditions. Atthebeginningofthestudy,themean (±SEM(Standarderrorofthemean))ageofthevolunteerswas56.7±2.4year,theirmeanheightwas 170.2±2.1cmandmeanweight88.6±5.6kg. Fromeachofthe18volunteers,faecalsampleswerecollectedfromthebeginningandendofeach of5distinctfeedingregimes(control,NA,RA,DAandAB)(eachtreatmentperiodlasting3weeks). Followinga14-dayadaptationtoeachofthe5feedingregimes,thestudysubjectsreceivedbluedye capsulestomarkthebeginningofaoneweekexcretacollectionperiodandasecondbluedyecapsule tomarktheendofthecollectionperiod. ThestudyprotocolandinformedconsentformwerereviewedandapprovedbytheMedStar Health Research Institute and the associated faecal samples were registered with the QIB Human ResearchGovernanceCommitteeinDecember2016. 2.2. SimulatedOralDigestion The aim of this procedure was to simulate the chewing of the almond meals in the mouth. Chewing is the initial step in the digestion process and this procedure was designed to simulate boththesalivaryamylaseactivityandthemechanicalbreakdownofthefood. Fouralmondsamples, NA,RA,DAandAB(25g),wereminced3timesusingamincer(Lexenmincer,Windermere,UK) tosimulatethemechanicaloralbreakdownofthemeal. Thereafter,12.5mLofSimulatedSalivary Fluid (SSF) at pH 6.9 (0.15 M sodium chloride, 3 mM urea) and 900 U Human Salivary Amylase (HSA)dissolvedin1mLSSFwereaddedtothemincedalmondsorthealmondbutter[12]andmixed. Thisprocessproducedapasteofequalratioofsolidtowaterascalculatedfromhumanchewing[13]. 2.3. ParticleSizeDistribution(PSD) The particle size of the samples before (AB) and after simulated oral digestion (NA, RA, DA andAB)wasmeasuredusingmechanicalsieving. Briefly,22.5gofeachsamplemixedwithSSFwas loadedonastackofsieveswith9aperturesizes: 3350,2000,1000,850,500,250,125,63and32µm (Endecotttestsieveshaker,EndecottsLtd.,London,UK).Thesampleswerewashedwithdeionized water, shaken for 15 min and washed again, thus ensuring separation of the particles. The sieves werethendriedinaforced-airovenat56◦Cfor6h. Thebaseswerelefttodryat100◦Covernight (about15h),whichpermittedcompleteevaporationofthewater. Thesieveswereweighedbefore loading the sample and then again after having been oven dried. The dried fractions retained on eachsieveandthebasewereexpressedasapercentageoftheweightofalmondsbeforesimulated oralprocessing. 2.4. LipidReleaseafterOralProcessingandMathematicalModel Lipidextractionfortotalfatdeterminationonallsamples,beforeandafteroralprocessing,was performedwithaSoxhletautomaticSoxtec2050extraction(FOSSAnalytical,Hilleroed,Denmark) usingn-hexaneasasolvent[5]. ForAB,itwasassumedthatthecontinuousoilphasewasbioaccessible andthereforetheaimwastomeasuretheadditionallipidreleasedfromthealmondparticlespresent inAB.ThealmondparticleswereseparatedfromthecontinuousoilphaseofABbycentrifugation (REMI Elektrotechnik LTD., Vasai (East), India (13,000× g, 15 min) before and after chewing and thelipidcontentoftheparticleswasdeterminedasdescribedbelow. Thefatpresentinthepellets (almondparticles)wasalsodetermined: thepelletwaswashed5timeswithwarm(37◦C)distilled watertoremoveanyfreefatreleasedfromthecells,thenseparatedbycentrifugationandquantified byn-hexaneextraction. Thelipidpresentwithintheremainingwetpellet(theoreticallyinsidethe almondcells)wasextractedbytheBligh&Dyer[14]method. Briefly,almondparticleswereextracted inchloroform/methanol/waterintheproportions1:2:0.8andthelipidwasthenquantifiedinthe chloroformlayer. Nutrients2018,10,213 4of20 2.5. ResultsofLipidContentWereExpressedasaPercentageofDryWeight Lipid release was predicted from the measured particle size distribution by sieving and the previouslymeasuredaveragecelldiameter,36µmusingthemethodofGrassbyetal.[8].Thethreshold diameter below which 100% release would be achieved was 54 µm, particles below the threshold werenotincludedinthecalculationsoflipidrelease. Thespreadsheetprovidedassupplementary informationwasmodifiedtoacceptparticlesizedatafromsievingaloneandtoaccountfortheparticles abovethethresholddiameterthatwererecoveredonthe63µmsieve(50µm<p<100µm). 2.6. MicrostructuralAnalysis Portionsofeachalmondsample(NA,RA,DAandAB),beforeandaftersimulatedoraldigestion, wereincubatedinthechelatingagentCDTA(1,2-Cyclohexylenedinitrilotetraaceticacid)(50mMCDTA, pH=7)at4◦Cforaminimumof4weeks[15]. Thistreatmentweakensthepectinlayerinthemiddle lamellabetweencellssothatindividualcellscanbeseparatedfromlumpsoftissuebygentlepressure. Theseindividualcellswerethenobserved,unstained,bymicroscopy(bright-fieldorpolarizingoptics), orafterstainingwithSudanIV(0.1%SudanIVin1:1acetoneand70%ethanol)tovisualizetheiroil content. TheCDTAtreatmenthaspreviouslybeenfoundtopreventmicrobialgrowthandtoretainthe oilfractionintheformitexistsinthecellsofthekernel,eitherasindividualoilbodiesinNAoras largecoalescedoilglobulesinRAwhicharecharacteristicoftheroastingprocess[15]. Freshsections ofrawandroastedsampleswerenotusedbecausethesectioningprocesswasfoundtoreleasetheoil fromthedamagedcellssothatthespatialinformationwaslost. Initialobservationsweremadeonfaecalsamplesfrom3randomly-chosenvolunteersonmaterial storedinCDTA[15]. Itwasfoundthatthismethodwasnotoptimalassomeofthefreeoilcontentrose tothesurfaceandlargerlumpsoftissuesankintheCDTAmakingitdifficulttoobtainarepresentative sample. However,itwasausefulpreliminarysteptohelpidentifytherangeofplantstructuresthat survivedpassagethroughthebowel. Theseincludedwheatbranlayers(primarilyaleurone,thecells of which are similar in size to almond tissue) and brush hairs, vascular tissue, xylem and tannin bodyinclusions. Subsequentinvestigationsonsamplesfromvolunteerswithmeasuredhighfaecalfatcontent weremadebymixingasmallsampleofthefrozenfaecalmatterdirectlyonamicroscopeslidewith theoilstainSudanIVtominimiselossofcomponents. Formicroscopy,sampleswereexaminedandphotographedusinganOlympusBX60(Olympus, Southend-on-Sea,UK)microscopeandProgRes®CapturePro2.1software(Jenoptik,Jena,Germany). 2.7. StatisticalAnalysis Results of lipid release from mastication were expressed as mean ± standard deviation (SD) of four independent experiments and analysed by one-way analysis of variance (ANOVA). The significance was assayed by using the Student-Newman-Keuls test using the SigmaPlot 12.0 software(SystatSoftwareInc.,SanJose,CA,USA).Statisticalsignificancewasconsideredatp<0.001. 3. Results 3.1. ParticleSizeAnalysis Theweightofmasticatedalmondretainedonthesieves,presentedasapercentageoftheoriginal weightofthemasticatedalmond,wasplottedagainsttheaperturesizeofeachsieve. Theaverage PSDsforthedifferentalmondsamplesisshowninFigure1. NA,RAandDAhadverysimilarPSDs withmostoftheparticleshavingasizeof1000µmandabove. Ontheotherhand,ABboluscontained mainlysmallparticles(<850µm). ThePSDsofNAandRAweresimilartotheonesmeasuredfor boluses from our human study [7], demonstrating that our simulated oral processing was a good alternativetohumanmastication. Nutrients2018,10,213 5of20 Figure1.Particlesizedistributionsbymechanicalsievingofalmondboluses(n=2).Theweight%of allmaterialrecoveredinthesievebase(<32µm)isgivenatsize=0.01µm. 3.2. LipidReleaseafterSimulatedMasticationandPredictedLipidRelease Thereleaseoftotallipidasapercentageoftheoriginallipidcontentofeachsample(53.4%,w/wfor NA,54.1%,w/wforRA,55.6%,w/wforDAand50.1%,w/wforAB)aftersimulatedmasticationis reportedinTable1. Inagreementwithpreviousdata[15],between8.9%and11.8%oftheoriginal lipidintheNAandRAsamples,respectively,wasreleasedasaresultofmastication. Thehigherlipid releaseinroastedDAcomparedwiththatdetectedinRAcouldbeexplainedbytheincreasedsurface area in DA,whichwereroastedafterdicing. ForAB,tocalculatethetotalavailablelipid, wehad to determine the additional lipid released from almond particles in AB as a result of mastication. ThelipidreleasedfromparticlesinABfollowingchewing(6.2%)wascalculatedas%lipidcontentof theremainingintactalmondtissueafterthefreelipidinthecontinuous-oilphase(48.2%oftotallipid) andtheavailablelipidassociatedwiththealmondparticles(39.6%oftotallipid)hadbeenremoved (seeSection2.4). Therefore,thetotallipidavailablefordigestioninAB,obtainedbycombiningthe availablelipidduetoinitialprocessing(continuousphaselipidplusavailablelipidassociatedwith theparticles)andtheadditionallipidreleasedfromtheremainingintactparticlesduringmastication, was94.0%. The values for predicted lipid release are presented in Table 1: a close agreement with the measuredlipidreleasewasobtainedwithNA,RAandAB.Themeasuredlipidreleasewashigher thanthepredictedreleaseinDA:thisisprobablytheeffectofroasting. Table1.Lipidreleasedduringmastication(%)andpredictedlipidrelease(%)fromnaturalrawalmonds (NA,n=4),roastedalmonds(RA,n=4),dicedalmonds(DA,n=4)andalmondbutter(AB,n=4)dueto sampleprocessingandmastication.Valuesrepresenttheaverage±SD(standarddeviation). Almond LipidReleasedDueto PredictedLipid TotalLipidPotentially Meal Mastication(%) Release(%)* AvailableforDigestion(%)** NA 8.9±0.7 9.6 8.9±0.7b RA 11.8±1.1a 12.6 11.8±1.1b DA 12.4±0.8a 9.6 12.4±0.8b AB 6.2±0.4 6.4 94.0±4.6 *Sieving,averageofn=2;**Referredto%oftotallipid;ap<0.001vs.AB;bp<0.001vs.AB. Nutrients2018,10,213 6of20 3.3. MicroscopyExaminationonAlmondBaselineSamples Observationsonbaselinesamplesareessentialtocharacterizethedifferencesinmicrostructure betweennaturalrawalmondtissue,almondtissueprocessedbyroastingandalmondtissueroasted andgroundtobutter. Thesedifferencesarerelevanttothebehaviourofthealmondmaterialduring chewingandsubsequentlytothefateofthealmondtissueinthedigestivetract. 3.3.1. NA Individual whole cells separated from raw almond tissue by CDTA are shown unstained in Figure2aandstainedwithSudanIVtolocatelipid(Figure2b). Thecellsaresmall,lessthan50µm in diameter and tightly packed, with well-defined cell walls. The appearance and distribution of the protein bodies and lipid in unstained cells after CDTA treatment is consistent with previous observations[15]thatthelipidisstillwithinoleosomes,surroundingtheproteinbodiesasinmature rawalmondsnottreatedwithCDTA.InSudanIV-stainedmaterial,thesurvivaloftheoleosomesis demonstratedbyanevendistributionoflipidwithineachcell(Figure2b). Figure2.CDTA-separatedcellsofbaselinenaturalrawalmonds(a)unstained(b)lipidstainedwith SudanIVandroastedalmonds(c)unstained(d)lipidstainedwithSudanIVshowinglipidcoalescence inthecellsfollowingroasting. Nutrients2018,10,213 7of20 3.3.2. RA Theeffectofroasting,inbothwholeanddicedalmonds,istoliberatethelipidfromtheoilbodies, whichthenformslargelipiddroplets,asseeninbothunstained(Figure2c)andstainedcells(Figure2d). Itispossiblethatindividualcellsinchoppedalmondsmayachieveahigherinternaltemperaturethan thoseinwholeroastalmondsduetothegreatersurfaceareaexposedtoroasting. 3.3.3. AB ThebaselineABsampledifferedconsiderablyfromtherawandroastedbaselinesamplesinthat mostofthecellsofthekernelsareruptured,releasingthelipid(andothercellcontents)toformapaste. Cellfragments(walls,proteinbodies,nuclei,testaandsomesmallintactclumpsofcells)aresuspended inacontinuouslipidphase(Figure3a),whichwasstainedwithSudanIV(Figure3b).Fragmentsofthe browntestaarerichincalciumoxalatecrystals(Figure3c).Proteinbodies,liberatedfromthecellsbythe grindingprocess,retainthedimpledsurfaceimpressionscreatedbythesurroundingoleosomes(Figure3d). Theothermajorparticulatecomponentsofthealmondbutterarefragmentsofcellwalls(Figure3d). Figure3.Almondbutterbaselinesampleshowingcellularfragmentssuspendedinalipidphase(a) asmallgroupofkernelcellsfromwhichthelipidhasbeenreleased(b)thelipidphasestainedwith SudanIV(c)fragmentsofbrowntestacontaininglargecalciumoxalatecrystals(d)proteinbodiesand cellwallfragmentsinthelipidphase. Nutrients2018,10,213 8of20 Additionalinformationonthecomponentsofthealmondbutterstartingmaterial,particularlythe proteinbodies,wasobtainedbyfirstde-oilingthebutterwithchloroform/methanol(1:1). Thematerial couldthenbeviewedmoreclearly(Figure4)unstained,orstainedwithdiluteaqueoustoluidineblue. Although the butter looks finely ground, it does contain some multicellular particles in the range 150µm–1mmasillustratedinFigure4a. Followingde-oiling,theproteinbodiestendedtoclump togetherbutsmallcrystalsofcalciumoxalatearevisiblewithinthelargerproteinbodies(Figure4b–d, blackarrows)underpolarizingoptics. Alsovisiblewithinthelargerproteinbodies,afterstainingwith dilutetoluidineblue,aresphericalgloboidbodiesintheformofsmallspheres(Figure4d,bluearrow). ThesegloboidshavebeenshownbyEDX(EnergyDispersiveX-ray)analysistoberichinphytin[16], themainsiteformineralstorageinseeds. Itshouldbenotedthattheproteinbodiesandtheircontents, releasedfromthecellsbygrinding,arefarmoreaccessibletodigestiveenzymesthatthosestillwithin cellwalls[17]. Figure4. Almondbutterbaselinesamplede-oiledinchloroform/methanol:(a)Thebuttercontains clumpsofkernelcellsandtestafragments;(b,c)individualproteinbodiesformclumpswithsome containingsmallcrystalsofcalciumoxalate(blackarrows)visibleunderpolarisingoptics;(d)protein bodiesstainedwithdilutetoluidineblueshowinganoxalatecrystalandphytingloboids(bluearrow) foundinthelargerproteinbodies. Nutrients2018,10,213 9of20 3.4. MicroscopyExaminationafterSimulatedOralDigestion 3.4.1. ChewedNA Thesizerangeofmulticellularparticlesoftheunstainedchewedrawsampleatlowmagnification is shown in Figure 5a. Lipid which has been expressed by the chewing process is present as droplets of different sizes. In this sample, which has undergone artificial chewing and storage in CDTA, the lipid droplets appear to be a single lipid phase. However, preliminary observations on fresh volunteer-chewed NA showed that many of the larger lipid drops were in the form of water-in-oil-in-water (WOW) compound emulsions but the internal water droplets tended to coalesce over time. It is possible that storage in CDTA was less than optimal for stabilising the artificially-chewedsampleandthatanycompoundemulsionsthatmayhaveformedduringchewing werelostduringstorage. SeparationofthecellsinthelargerparticleswasfacilitatedbyCDTAandshowedthatmanyof thesecellsareundamaged(Figure5)andthatthelipidisstillpresentinoleosomes.Thiswasconfirmed afterstainingwithSudanIV(Figure5c,d)tolocatethelipidinundamagedcells,damagedcellsand freelipiddroplets. Comparedwithotherparenchymatoustissue,thecellsofalmondseedsarevery smallandsomanycellsescapetheshearingandcrushingforcesduringchewing,bothsimulatedand inthemouth. Figure5. ChewedwholerawalmondsstoredinCDTA:(a)multicellularparticlesofalmondtissue surroundedbyreleasedlipiddrops;(b)individualundamagedcellsseparatedfromthelargerparticles contain lipid still within oleosomes; (c) Sudan IV staining showing the even distribution of lipid inoleosomeswithinwholecells; (d)lipidreleasedfromdamagedcellscoalescesintolargerdrops withoutinclusions. Nutrients2018,10,213 10of20 3.4.2. ChewedRA Roastingisknowntomakethealmondtissuebrittlebut,asintherawsample,therearemany particles consisting of intact cells in an emulsion of released lipid (Figure 6a). Lipid drops adhere tothesurfaceoftheseparticles(Figure6b). Althoughtheparticleslargelycontainundamagedcells, thelipidineachcellhascoalescedasnotedfortheunchewedroastedsamples(Figure6c). Athigher magnification(Figure6d)manyofthereleasedlipiddropsareseentoconsistofawater-in-oil-in-water (WOW)compoundemulsion. Thefactthatthesecompoundemulsiondropspersistedduringstorage inCDTAsuggeststhattheyaremorestablethanthoseinchewedrawalmonds. Apossibleexplanation isthatduringtheroastingprocesswhenthelipidbodiescoalesced,additionalinterface-stabilising compounds,suchasproteins,werereleasedfromthecellsandthesethenbecomeactiveatthesurface of the internal water phase drops, effectively preventing them from coalescing. The mechanisms underlyingthiseffectcouldbethesubjectoffuturestudies. Figure6.ChewedwholeroastedalmondsstoredinCDTA:(a)multicellularparticlesofalmondtissue surroundedbyreleasedlipiddrops; (b)lipiddropsstainedwithSudanIVadheretotheparticles; (c)lipidisreleasedfromoleosomesduringroastingandcoalesceswithintheundamagedcells;(d)many ofthereleasedlipiddropsareintheformofawater-in-oil-in-wateremulsionwhichpersistduring storageinCDTA.

Description:
Incomplete rupturing of the cell walls during mastication results in macronutrient encapsulation, which remain inaccessible to digestive enzymes and,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.