UCLA UCLA Electronic Theses and Dissertations Title Understanding Arithmetic through Definitions Permalink https://escholarship.org/uc/item/5xr5x4f1 Author Nutting, Eileen Susanna Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Understanding Arithmetic through Definitions A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Philosophy by Eileen Susanna Nutting 2013 (cid:13)c Copyright by Eileen Susanna Nutting 2013 ABSTRACT OF THE DISSERTATION Understanding Arithmetic through Definitions by Eileen Susanna Nutting Doctor of Philosophy in Philosophy University of California, Los Angeles, 2013 Professor Donald A. Martin, Chair Identifying the source of our mathematical knowledge is an old and challenging prob- lem. In order to avoid postulating cognitive faculties that seem entirely mysterious, such as mathematical intuition, some philosophers have attempted to explain our mathematical knowledge by claiming that it is grounded in definitions, stipulations, or postulations. In this dissertation, I argue against a range of views of this sort in the domain of arithmetic. I ar- gue that none of these views can account for our mathematical knowledge unless we already understand arithmetical structure when we introduce the relevant definitions, stipulations, or postulations. An adequate account of mathematical knowledge must explain how we have this antecedent cognitive grip on the structure of arithmetic. The views under consideration, I argue, are inadequate because they fail to explain this antecedent cognitive grip. The dissertation begins with a discussion of the problem of mathematical knowl- edge. In the process, I introduce several desiderata for theories of mathematical knowledge. Definition-based accounts are attractive because they fare well on many of these desiderata. ii In the rest of the dissertation, I argue against three such accounts. First, it could not be the case that all of our mathematical knowledge is grounded in axiomatic definitions; we have arithmetical knowledge that could not emerge from axioms. Second, it could not be the case that our ability to think about the natural numbers is grounded in a stipulation of Hume’s Principle as an implicit definition; such a stipulation could not uniquely fix referents for number-phrases, and ancient mathematicians could not have stipulated it in a suitable way. And third, our knowledge of basic arithmetical truths is not entirely grounded in the standard simple proofs of those truths, which rely on explicit definitions of the form ‘4=3+1’. While these proofs surely contribute to the security of our arithmetical knowledge, we can only understand these proofs if we already understand the structure of arithmetic. So, our most basic arithmetical knowledge is cognitively prior to these explicit definitions. iii The dissertation of Eileen Susanna Nutting is approved. John P. Carriero Yiannis N. Moschovakis Terence Dwight Parsons Donald A. Martin, Committee Chair University of California, Los Angeles 2013 iv In memory of Matt Garber, who first encouraged me to pursue philosophy v Contents 1 The Problem of Mathematical Knowledge 1 1.1 Lessons from the Meno . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 The Obvious Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 The Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Mathematical Reasoning and Hilbert’s Geometry . . . . . . . . . . . . . . . 6 1.2.1 Constructive and Non-Constructive Geometry . . . . . . . . . . . . . 6 1.2.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2.3 Implicit Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3 Benacerraf Problems: Truth and Knowledge . . . . . . . . . . . . . . . . . . 13 1.3.1 Sacrificing Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.3.2 Benacerraf’s ‘Combinatorial’ Classification . . . . . . . . . . . . . . . 20 1.3.3 The Epistemic Appeal . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 The Problem of Combinatorial Knowledge . . . . . . . . . . . . . . . . . . . 30 1.4.1 Hilbert and Antecedent Knowledge . . . . . . . . . . . . . . . . . . . 30 1.4.2 What Follows: An Overview . . . . . . . . . . . . . . . . . . . . . . . 32 2 Axiomatic Definitions of N 36 2.1 First-Order Peano Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.1.1 Uniqueness and Isomorphism . . . . . . . . . . . . . . . . . . . . . . 39 2.1.2 Standard and Nonstandard Models . . . . . . . . . . . . . . . . . . . 41 vi 2.1.3 Mathematical Induction . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.4 First-Order Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.2 Second-Order Peano Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . 46 2.2.1 Second-Order Categoricity . . . . . . . . . . . . . . . . . . . . . . . . 47 2.2.2 Potential Limitations of Second-Order Quantification . . . . . . . . . 49 2.2.3 Understanding through Axioms . . . . . . . . . . . . . . . . . . . . . 50 2.3 To Distinguish Standard Models . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.3.1 Traditional and Intuitive Kinds of Finitude and Infinity . . . . . . . . 53 2.3.2 Technical Definitions of Finitude . . . . . . . . . . . . . . . . . . . . 58 2.3.3 Taking Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 2.3.4 The Least Number Principle . . . . . . . . . . . . . . . . . . . . . . . 65 2.3.5 Descending Progressions . . . . . . . . . . . . . . . . . . . . . . . . . 66 2.4 Resisting Relativism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 2.5 Appendix I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.6 Appendix II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3 On Interaction Problems and Hume’s Principle 72 3.1 Interaction Problems for Platonism . . . . . . . . . . . . . . . . . . . . . . . 72 3.1.1 Descriptions, Interaction, and Object-Directed Thought . . . . . . . . 74 3.2 The Fregean Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.2.1 Abstraction Principles: Hume’s Principle and Direction Equivalence . 79 3.2.2 Implicit Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.3 Identifying Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.1 Fixing Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.2 Distinguishing Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.4 The Ancients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.1 The Possibility of an Alternative Method of Engagement . . . . . . . 94 3.4.2 Continuity of Object-Directed Thought . . . . . . . . . . . . . . . . . 98 vii 3.4.3 The Very Idea of Implicit or Innate Stipulation . . . . . . . . . . . . 100 3.5 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4 2+2=4: A Basic Arithmetical Proof 103 4.1 Leibniz’s Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Leibniz’s Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.2.1 Defining Number-Objects . . . . . . . . . . . . . . . . . . . . . . . . 107 4.2.2 Defining Numerals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.2.3 Compositional Number-Expressions . . . . . . . . . . . . . . . . . . . 110 4.3 The Meaning of ‘a+b’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 4.3.1 Collections, Combinations, and Sums . . . . . . . . . . . . . . . . . . 112 4.3.2 An Extensional Function . . . . . . . . . . . . . . . . . . . . . . . . . 115 4.3.3 Fregean Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4.4 The Successor Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.4.1 Accounting for Successor . . . . . . . . . . . . . . . . . . . . . . . . . 129 4.4.2 A Primitive Successor Function . . . . . . . . . . . . . . . . . . . . . 132 4.5 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 viii
Description: