UNDERSTANDING ACTIVE ABL KINASE CONFORMATIONS: APPLICATION TO DISCOVERY OF SMALL MOLECULE ALLOSTERIC MODULATORS by Prerna Grover Bachelor of Engineering in Biotechnology, Panjab University, 2009 Submitted to the Graduate Faculty of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Prerna Grover It was defended on April 13, 2015 and approved by Jeffrey L. Brodsky, Ph.D., Dissertation Committee Chair, Biological Sciences J. Richard Chaillet, M.D., Ph.D., Microbiology and Molecular Genetics Qiming Jane Wang, Ph.D., Pharmacology and Chemical Biology Ora A. Weisz, Ph.D., Cell Biology Thomas E. Smithgall, Ph.D., Dissertation Advisor, Microbiology and Molecular Genetics ii Copyright © by Prerna Grover 2015 iii UNDERSTANDING ACTIVE ABL KINASE CONFORMATIONS: APPLICATION TO DISCOVERY OF SMALL MOLECULE ALLOSTERIC MODULATORS Prerna Grover, Ph.D. University of Pittsburgh, 2015 The c-Abl protein-tyrosine kinase regulates diverse cellular signaling pathways involved in cell growth, adhesion, and responses to genotoxic stress. Abl is well known in the context of Bcr- Abl, the active fusion tyrosine kinase, which causes chronic myelogenous leukemia (CML) and other leukemias. The tyrosine kinase activity of Abl is tightly regulated by auto-inhibitory interactions involving its non-catalytic SH3 and SH2 domains. Mutations that perturb these intramolecular interactions result in kinase activation. This study examined the effect of activating mutations on the biochemistry and solution structure of Abl core proteins. In an active myristic acid-binding pocket mutant (A356N), the relative positions of the regulatory N-cap, SH3 and SH2 domains were virtually identical to those of the assembled wild-type core despite differences in catalytic activity and thermal stability. In contrast, a dramatic structural rearrangement in an active gatekeeper mutant (T315I) was observed with the positions of the SH2 and SH3 domains reversed relative to wild-type. These results show that Abl kinases can adopt multiple conformations in solution and kinase activation does not necessarily require destabilization of the assembled core structure. Small molecules that allosterically regulate Abl kinase activity through its non-catalytic domains may represent selective probes of Abl function. I developed a screening assay to identify chemical modulators of Abl kinase activity that either disrupt or stabilize the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) iv assay is based on a recombinant Abl protein containing the regulatory domains (Ncap-SH3-SH2- linker, N32L) and a short fluorescein-labeled probe peptide that binds the SH3 domain. The probe peptide binds the recombinant Abl N32L protein in vitro producing a robust FP signal. Mutation of the SH3 binding site (W118A) or introduction of a high-affinity linker both resulted in loss of the FP signal. Pilot screens were performed with two chemical libraries (2800 compounds total), and thirteen compounds were found to specifically inhibit the FP signal. Secondary assays showed that one of these hit compounds enhances Abl kinase activity in vitro. These results show that screening assays based on the regulatory domains of Abl can identify allosteric modulators of kinase function. v TABLE OF CONTENTS ACKNOWLEDGEMENTS .................................................................................................... XIV 1.0 INTRODUCTION ........................................................................................................ 1 1.1 C-ABL KINASE OVERVIEW ........................................................................... 1 1.2 STRUCTURE AND REGULATION OF C-ABL ............................................. 3 1.2.1 Regulation by intramolecular interactions.................................................... 4 1.2.1.1 N-terminal cap (N-cap) ......................................................................... 4 1.2.1.2 SH3 domain ........................................................................................... 6 1.2.1.3 SH2 domain ........................................................................................... 8 1.2.1.4 SH2-kinase linker .................................................................................. 9 1.2.1.5 Kinase domain ..................................................................................... 12 1.2.1.6 C-terminal region ................................................................................ 16 1.2.2 Conformational dynamics of Abl proteins .................................................. 16 1.2.2.1 Small Angle X-ray Scattering (SAXS) .............................................. 17 1.2.2.2 Hydrogen Exchange Mass Spectrometry (HXMS) .......................... 19 1.2.2.3 Nuclear Magnetic Resonance Spectroscopy (NMR) ........................ 22 1.2.3 Physiological regulation of Abl kinase function ......................................... 24 1.2.3.1 Phosphorylation .................................................................................. 25 1.2.3.2 Interaction with binding partners ..................................................... 26 vi 1.2.3.3 Growth factor induced activation ...................................................... 28 1.3 C-ABL IN DNA DAMAGE ............................................................................... 29 1.3.1 Role of Abl in the DNA damage repair pathway ........................................ 30 1.3.2 Abl signals inducing apoptosis ..................................................................... 32 1.4 BCR-ABL AND CHRONIC MYELOGENOUS LEUKEMIA ..................... 33 1.4.1 Disease overview ............................................................................................ 33 1.4.2 Bcr-Abl: origin and mechanism of activation ............................................. 34 1.4.3 Imatinib: targeted Bcr-Abl kinase inhibitor ............................................... 37 1.4.3.1 Imatinib: mechanism of action .......................................................... 38 1.4.3.2 Mechanisms of resistance to imatinib ............................................... 39 1.4.4 Second and third generation ATP-competitive inhibitors of Bcr-Abl ...... 44 1.4.5 Allosteric inhibitors of Bcr-Abl .................................................................... 46 1.5 ROLE OF C-ABL IN SOLID TUMORS ......................................................... 48 1.5.1 Abl as a promoter of tumor growth ............................................................. 49 1.5.2 Abl as a suppressor of tumor growth........................................................... 49 1.6 HYPOTHESIS AND SPECIFIC AIMS........................................................... 50 2.0 THE C-ABL KINASE ADOPTS MULTIPLE ACTIVE CONFORMATIONAL STATES IN SOLUTION* .......................................................................................................... 52 2.1 SUMMARY ........................................................................................................ 52 2.2 INTRODUCTION ............................................................................................. 53 2.3 MATERIALS AND METHODS ...................................................................... 58 2.3.1 Recombinant protein expression and purification ..................................... 58 2.3.2 Protein kinase activity measurements ......................................................... 58 vii 2.3.3 Transient expression of Abl proteins in HEK 293T cells ........................... 59 2.3.4 Kinetic protein kinase assay ......................................................................... 59 2.3.5 Differential Scanning Fluorimetry (DSF) .................................................... 60 2.3.6 X-ray solution scattering data collection ..................................................... 61 2.3.7 Reconstruction of molecular envelopes ....................................................... 62 2.4 RESULTS ........................................................................................................... 63 2.4.1 Biochemical characterization of the kinase activity of Abl kinase proteins 63 2.4.2 Thermal stability of Abl proteins ................................................................. 67 2.4.3 X-ray scattering analysis ............................................................................... 72 2.4.4 Shape reconstructions from X-ray solution scattering data ...................... 73 2.4.5 Enhanced SH3-linker interaction reverses the structural changes induced by the T315I mutation ............................................................................................... 77 2.4.6 Effect of small molecules on thermal stability of Abl kinase proteins ...... 78 2.5 DISCUSSION ..................................................................................................... 81 3.0 FLUORESCENCE POLARIZATION SCREENING ASSAYS FOR SMALL MOLECULE ALLOSTERIC MODULATORS OF C-ABL KINASE FUNCTION* ......... 84 3.1 SUMMARY ........................................................................................................ 84 3.2 INTRODUCTION ............................................................................................. 85 3.3 MATERIALS AND METHODS ...................................................................... 90 3.3.1 Expression and purification of recombinant Abl proteins ........................ 90 3.3.2 Peptide synthesis ............................................................................................ 91 3.3.3 Fluorescence polarization assay ................................................................... 92 viii 3.3.4 Chemical library screening ........................................................................... 92 3.3.5 Differential Scanning Fluorimetry (DSF) .................................................... 93 3.3.6 Surface Plasmon Resonance (SPR) .............................................................. 94 3.3.7 Protein kinase assays ..................................................................................... 94 3.3.8 Molecular dynamics ...................................................................................... 96 3.3.9 Computational docking ................................................................................. 97 3.4 RESULTS AND DISCUSSION ........................................................................ 98 3.4.1 Abl fluorescence polarization (FP) assay design ......................................... 98 3.4.2 Recombinant Abl regulatory proteins for FP assay development ............ 99 3.4.3 Structural basis for high affinity probe peptide binding to the Abl SH3 domain ....................................................................................................................... 101 3.4.4 Selection of a probe peptide for the Abl N32L FP assay .......................... 103 3.4.5 Abl N32L FP assay development and optimization .................................. 105 3.4.6 Identification of inhibitors of p41 interaction with Abl N32L................. 107 3.4.7 Compounds identified in the Abl N32L FP screen interact directly with the Abl N32L protein in orthogonal assays............................................................ 112 3.4.8 Allosteric activation of Abl kinase by compound 142 .............................. 117 3.4.9 Molecular dynamics simulations and docking studies predict binding of compound 142 to the SH3:linker interface in the Abl kinase core ...................... 124 3.5 SUMMARY AND CONCLUSIONS .............................................................. 127 4.0 OVERALL DISCUSSION ...................................................................................... 130 4.1 EFFECT OF ACTIVATING AND STABILIZING MUTATIONS ON ABL KINASE ACTIVITY, STABILITY, AND CONFORMATION .................................. 131 ix 4.2 IDENTIFICATION OF ALLOSTERIC MODULATORS OF ABL KINASE FUNCTION ....................................................................................................................... 135 4.3 CLOSING REMARKS ................................................................................... 141 APPENDIX A ............................................................................................................................ 142 BIBLIOGRAPHY ..................................................................................................................... 144 x
Description: