ebook img

Ultrafast all-optical signal processing using semiconductor optical amplifiers PDF

149 Pages·2017·9.48 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Ultrafast all-optical signal processing using semiconductor optical amplifiers

Ultrafast all-optical signal processing using semiconductor optical amplifiers Citation for published version (APA): Li, Z. (2007). Ultrafast all-optical signal processing using semiconductor optical amplifiers. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR626974 DOI: 10.6100/IR626974 Document status and date: Published: 01/01/2007 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 16. Mar. 2023 Ultrafast all-optical signal processing using semiconductor optical ampli(cid:12)ers Zhonggui Li Ultrafast all-optical signal processing using semiconductor optical ampli(cid:12)ers PROEFSCHRIFT ter verkrijgingvan de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de Rector Magni(cid:12)cus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezendoor het College voor Promoties in het openbaar te verdedigen op dinsdag 12 juni 2007 om 16.00 uur door Zhonggui Li geboren te Sichuan, China Dit proefschrift is goedgekeurd door de promotor: prof.ir. G.D. Khoe en prof.dr. D. Lenstra Copromotor: dr.ir. H.J.S. Dorren CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN Li, Zhonggui Ultrafast all-optical signal processing using semiconductor optical ampli(cid:12)ers / by Zhonggui Li - Eindhoven : Technische Universiteit Eindhoven, 2007. Proefschrift.- ISBN 978-90-386-1534-9 NUR 959 Trefw.: optische telecommunicatie / halfgeleiderversterkers/ optische signaalverwerking. Subject headings: optical (cid:12)bre communication / semiconductor optical ampli(cid:12)ers / optical information processing. Copyright c 2007by Zhonggui Li (cid:13) Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin are- trievalsystem,ortransmittedinanyformorbyanymeanswithoutthe priorwrit- ten consent of the author. Typeset using LATEX, printed in The Netherlands Summary Ultrafast all-optical signal processing us- ing semiconductor optical ampli(cid:12)ers As the bit rate of one wavelength channel and the number of channels keep increasing in the telecommunication networks thanks to the advancement of op- tical transmission technologies, switching is experiencing the transition from the electrical domain to the optical domain. All-optical signal processing, including wavelengthconversion,opticallogicgatesandsignalregeneration,etc,isoneofthe mostimportantenablingtechnolgiestorealizeopticalswitching,includingoptical circuit switching, optical burst switching and optical packet switching. Semiconductoropticalampli(cid:12)ers(SOAs)areverypromisinginall-opticalsignal processingbecausetheyarecompact,easytomanufactureandpowere(cid:14)cient. Itis thereforeveryimportanttodevelopnumericalmodelsfortheSOAstounderstand their behaviourin di(cid:11)erent system con(cid:12)gurations,especiallywhen the interacting pulsedurationbecomesshorterandshorterwith increasingbitrate,whereseveral e(cid:11)ects that are neglected in previous models have to be accounted for. To investigate high-speed SOA-based all-optical signal processing systems, in this thesis we develop a comprehensive model, which includes both inter- and intra-bandcarrierdynamics,gaindispersionandgroupvelocitydispersion,inthis thesis. Polarization dependent e(cid:11)ects can also be taken into account through introducing an imbalance factor f. Finite-di(cid:11)erence beam propagation method is employed to solve the numerical model. Mode-locking lasers o(cid:11)er a lot of applications in all-optical signal processing systems. Inthisthesisweinvestigateanovelmode-lockedlaserbasedonnonlinear polarization rotation in an SOA. The pulse narrowing process is demonstrated numerically, achieving good agreement with our experimental results. The pulse performance is largely determined by the ultrafast SOA gain dynamics and the cavity dispersion. The laser can produce a pulse train of sub-picosecond pulse width at a repetition rate of 28 GHz, which is limited by the carrier lifetime, for a moderate SOA currentlevel. For higher currentsinstabilities occurin the laser. vi OneofthedrawbacksoftheSOA-baseddevicesistherelativelylonggainrecov- ery time which results in strong pattern e(cid:11)ects for high bit rate operaion. In this thesis we extensively investigate a very high bit rate wavelength converter based on a single SOA and an optical bandpass (cid:12)lter. The enhancement in operation speed is based on (cid:12)ltering an amplitude- and phase-modulated signal. We study the underlying working principle and perform detailed analysis of the high-speed wavelengthconverter,whichleadstooptimizationrulesforhigh-speedSOA-based wavelengthconversion. Moreover,bothinvertedandnon-invertedwavelengthcon- version at much higher bit rate(1 T b/s), is also predicted. Furthermore, genetic algorithm is introduced in the optimization of the transfer function of the OBF following the SOA. Through optimization, eye opening of more than 33 dB is shown for non-inverted wavelength conversion. The optimized (cid:12)lter can be ex- perimentally implemented through a combination of asymmetric Mach-Zehnder interferometer and a Gaussian (cid:12)lter. Enlightenedbytheworkingprincipleofthewavelengthconverter,weproposed and demonstrated experimentally a novel optical logic gate with a very simple structure: an SOA followed by an OBF. This logic gate can realize AND, OR and XOR gate functions based on the same setup but with di(cid:11)erent operation conditions. This novel device can be integrated. Contents 1 Introduction 1 1.1 Switching: From electrical to optical . . . . . . . . . . . . . . . . . 1 1.2 All-optical signal processing . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Di(cid:11)erent materials . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.2 SOA-based all-optical signal processing: State of the art . . 5 1.2.3 Motivation of the work. . . . . . . . . . . . . . . . . . . . . 6 1.3 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Numerical model including ultrafast carrier dynamics 9 2.1 Overview of the SOA models . . . . . . . . . . . . . . . . . . . . . 9 2.1.1 Carrier dynamics . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1.2 Field propagation. . . . . . . . . . . . . . . . . . . . . . . . 12 2.2 The SOA model used in this thesis . . . . . . . . . . . . . . . . . . 14 2.2.1 Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2 Extended model . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . 21 2.3.1 Solving carrier equations. . . . . . . . . . . . . . . . . . . . 21 2.3.2 Solving (cid:12)eld equations . . . . . . . . . . . . . . . . . . . . . 22 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3 Mode-lockingbasedonnonlinearpolarizationrotationinanSOA 25 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Nonlinear polarization rotation in the SOA . . . . . . . . . 25 3.1.2 Mode-locking . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Working principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 viii CONTENTS 4 Performanceanalysisof(cid:12)lter-assistedhighspeedwavelengthcon- version 47 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.1.1 All-optical wavelength conversion . . . . . . . . . . . . . . . 47 4.1.2 SOA-based AOWC: Advantages and Challenges. . . . . . . 48 4.2 Working principle of (cid:12)lter-assisted wavelength converter . . . . . . 50 4.2.1 History in this (cid:12)eld. . . . . . . . . . . . . . . . . . . . . . . 50 4.2.2 Working principle . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 Experimental results at 160 Gb/s . . . . . . . . . . . . . . . 54 4.3.2 Experimental results at 320 Gb/s . . . . . . . . . . . . . . . 56 4.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.1 Previous work. . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4.2 Simulation Con(cid:12)guration . . . . . . . . . . . . . . . . . . . 60 Filter model. . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Performancemetrics of the output signal . . . . . . . . . . 62 Characteristics of the investigated SOA . . . . . . . . . . . 63 Gain dispersion . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4.3 Simulation results at 160 Gb/s . . . . . . . . . . . . . . . . 65 Output from detuned OBF . . . . . . . . . . . . . . . . . . 65 Pump pulse energy dependence . . . . . . . . . . . . . . . . 66 Probe power dependence. . . . . . . . . . . . . . . . . . . . 68 Linewidth enhancement factor dependence. . . . . . . . . . 70 Injection current dependence . . . . . . . . . . . . . . . . . 73 4.4.4 Simulation results at 320 Gb/s . . . . . . . . . . . . . . . . 76 4.4.5 Simulation results at 1 Tb/s. . . . . . . . . . . . . . . . . . 77 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.5.1 Di(cid:11)erentation function of the OBF . . . . . . . . . . . . . . 81 4.5.2 In(cid:13)uence of ASE . . . . . . . . . . . . . . . . . . . . . . . . 82 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Filter optimization for wavelength converter based on Genetic Algorithms 85 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . 85 5.1.2 Search algorithms . . . . . . . . . . . . . . . . . . . . . . . 86 5.1.3 Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . . . 87 5.2 Simulation con(cid:12)gurations . . . . . . . . . . . . . . . . . . . . . . . 88 5.3 Optimization results . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.1 Optimum (cid:12)lters. . . . . . . . . . . . . . . . . . . . . . . . . 89 5.3.2 Optimum (cid:12)lter tolerance against (cid:12)lter parameters . . . . . 92 5.3.3 Optimum(cid:12)ltertoleranceagainst(cid:11)andSOAoperationcon- dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 5.4 Implementation consideration . . . . . . . . . . . . . . . . . . . . . 94 CONTENTS ix 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 A novel all-optical logic gate based on an SOA and an optical bandpass (cid:12)lter 99 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2 System concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7 Conclusions and recommendations 107 References 111 A List of Abbreviations 125 B List of Publications 127 C Samenvatting 133 D Acknowledgements 135 E Curriculum Vit(cid:26) 137

Description:
speed is based on filtering an amplitude- and phase-modulated signal. Enlightened by the working principle of the wavelength converter, we .. is straightforward that, in order to realize OPS, many advanced all-optical sig-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.