ebook img

Type Ia supernovae and stellar winds in AGN driven relativistic bubbles PDF

0.24 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Type Ia supernovae and stellar winds in AGN driven relativistic bubbles

Mon.Not.R.Astron.Soc.000,000–000(0000) Printed28January2011 (MNLATEXstylefilev2.2) Type Ia supernovae and stellar winds in AGN driven relativistic bubbles 1 N. N. Chugai1,2⋆, E. M. Churazov1,3, R. A. Sunyaev1,3 1 0 1Max-Planck-Institutfu¨rAstrophysik,Karl-Schwarzschild-Str.1,D-85741Garching,Germany 2 2InstituteofAstronomyofRussianAcademyofSciences,PyatnitskayaSt.48,109017Moscow,Russia 3SpaceResearchInstitute,Profsoyuznaya84/32,Moscow117810,Russia n a J 7 28January2011 2 ] E ABSTRACT H We analyse behaviorof stellar windsof evolvedstars and the outcomeof SN Ia explosions intheAGNdrivenrelativisticbubble.Wefindthattheexpansionofwindshellsisefficiently . h deceleratedbytherelativisticpressure;theirbulkmotionhoweverispreservedsotheycross p thebubbletogetherwiththeparentstar.Thewindmaterialoccupiesasmallfractionofbubble - o volumeanddoesnotaffectsubstantiallytheexpansionofSNremnants.Theestimatedmaxi- r malradiusofaSNremnantinthebubbleis30-40pc,iftheenvelopekeepsitsintegrityand t s remainsspherical.AfragmentationofSNshellduetoRayleigh-Taylorinstabilitycanallevi- a atethepropagationoftheSNmaterialsotheejectafragmentsareabletocrosstherelativistic [ bubble.Outside thebubblewindshellsandsupernovafragmentsaredeceleratedin the intr- 1 aclustermediumatclose rangeoff thebubbleboundary.The depositedSNe Ia materialcan v enrichtheintraclustergaswithmetalsinathinlayerattheboundaryoftherelativisticbubble. 1 This process may lead to a rim of enhanced line emission. In the opposite limit, when the 9 fragmentationof supernovaremnantis moderateor absent,the SN Ia matteris advectedby 2 therelativisticplasmaandmayleavethecentralregionofthebrightclustergalaxytogether 5 withbuoyantlymovingbubbles. . 1 Keywords: galaxies:clusters. 0 1 1 : v i 1 INTRODUCTION thegrowthrateofthebubbleisdefinedbythepoweroftheAGN X (e.g.,Gull&Northover1973;Churazovetal.2000).Pairsofbub- Radio and X-ray observations show that in majority of regular r blesarelocatedonbothsidesofthecentralsupermassiveblackhole a galaxy clusters, possessing a cool core, the activity of a cen- andoftenseveralgenerationof bubblesdifferingintheirsizeand tral supermassive black hole mediated by AGN jets creates bub- thedistancefromthecenterareobserved. bles of relativistic plasma in the intra-cluster medium (ICM) (Bo¨hringeretal. 1993; Huang&Sarazin 1998; Churazovetal. Bubbles with sizes of order 1-10 kpc are often found in the 2000; McNamaraetal. 2000; Birzanetal. 2004). X-ray data are inner regions of galaxy clusters, sharing the space with brightest consistentwiththeassumptionthatbubblesarecompletelydevoid clustergalaxy(BCG).Forexample,inNGC1275(BCGofPerseus ofthermalgas(Sanders&Fabian2007)althoughthelimitsonthe cluster)withintheeffectiveradiusofthegalaxy(Re ∼15kpc)we amount of thermal gas in the bubbles are not very tight. The ab- see two bubbles on either side of the nucleus with the radius of senceofstrongshocksintheICMsurroundingthebubblesimplies each bubble 6.3 kpc (e.g., Bo¨hringeretal. 1993; Fabianetal. ∼ thattherelativisticplasmaisinapproximatepressureequilibrium 2003).InM87(Virgocluster)thebubbleradiusis 1.4kpc(e.g., ∼ withtheICM.Thesebubbles,inflatedbyanAGN,arebelievedto Formanetal. 2005, 2007), while the galaxy effective radius is of beresponsibleformechanicalcouplingoftheAGNenergyrelease order7.7kpc.Weexpectthatinbothcasesbubblesshouldcontain andthethermalstateoftheICMingalaxyclusters,groupsandin- significant fraction of the galaxy stars. These old low mass stars dividualellipticalgalaxies.Forthisreasoneveryaspectofbubble evolveasusual,losetheirmassviathewind,andsomeofthemgive physicsreceivesmuchattention. birthtotypeIasupernovae(SNeIa).Eveniftherelativisticbubble Giventheubiquityofbubblesinclusters,theseobjectsshould sweeps up all the thermal gas in the process of inflation a lot of be almost always present in the cluster core. The lifetime of the materialintheformofthestellarwindthuscanbesuppliedbythe bubbleinthestratifiedatmosphereissetby“buoyancy”time,while starsinsidethe bubbleduring thebubble life.Thiswindmaterial couldaffecttheexpansiondynamicsofsupernovaeexplodedinthe bubble. ⋆ E-mail:[email protected] The question we address here is what happens to the stellar 2 N. N. Chugaiet al. windsandSNIaejectaembeddedintherelativisticbubble.Almost M˙ =(m m )dNdm2 , (3) weightless relativistic plasma provides highly unusual conditions 2− wd dm dt for the dynamic evolution of wind shells and SNe. Two extreme where dm /dt is the rate at which upper limit m decreases with 2 2 scenarios are conceivable. In one limit all the wind material and time.Thisrateisdetermined bytherelationbetweenthelifetime SNejectaaredeceleratedandmixedwithrelativisticplasma.Dur- and initial star mass t = t (m /m)β, where β = 3.2 in the range 2 2 ingsubsequent evolution thebuoyantly risingbubblesadvect this of1 2 M (Schalleretal.1992).Forthesevaluesand M = 9 material with them. In another limit the matter ejected by evolv- 1010R− M⊙ theequation (3)yields M˙ = 0.416 M R yrs1.Th×e b,5 b,5 − ingstarspropagates freelythrough therelativisticplasma, attains correspondi⊙ngstellardeathrateisN˙ =0.83R yr⊙1 whichisalso b,5 − theboundariesofthebubbleandenrichestheICMjustoutsidethe therateofwindshellformationN˙ .OneexpectthustofindN = w w bubblewithheavyelements.Weinvestigatedifferentscenariosof t N˙ 2.7 107R newlycreatedwindenvelopesinthebubble b w ≈ × b,5 dynamicalevolutionofwindshellsandSNejectaandexploreob- volumewiththetotalamount ofthewindmatterinthebubbleof servationaloutcomesofthesescenarios. 0.5N 1.4 107R M , factor 104 larger than the mass in The structure of the paper is as follows. We first study the the fworm≈ of re×lativistbi,c5 pa⊙rticles of∼the bubble, 3pV/c2 2.4 ∼ × expansionandbulkmotionofthewindenvelopesincludingmass 103 M .Itshouldbenoted,however,thattheN estimateignores w striping effects. This provides us with the estimate of the filling sofara⊙possibleescapeofwindenvelopesfromthebubble,which factor of the wind shells ensemble. We then address the issue of isaddressedbelow. theSNenvelopeexpansiondynamicsandbulkmotion,Rayleigh- TaylorfragmentationoftheSNshellandpropagationofejectafrag- 2.2 Windshelldynamics mentsintherelativisticplasma.Finally,wediscusstheimplications ofresultsfortherelativisticbubblemattercontentsandintracluster Thedynamicaleffectofthewindmatterinthebubbleonacertain thermalenvironment. windshellorSNejectadependsonthefillingandcoveringfactors of wind shells. To assess the situation one needs first to find the averagevolumeandsizeofawindenvelopeatthefinalstageofits 2 WINDMATERIALINRELATIVISTICBUBBLE expansion.Hereweassumethatthebubbleisstaticandadoptthata starmoveswiththemeanvelocityv .Despiteasingularisothermal s 2.1 Starsandmassinjectionrate sphereisassumedforthestellarpopulation,itisreasonabletoesti- matev usingMaxwellvelocitydistributiontruncatedattheescape Weconsider,asafiducialmodel,asphericalbubbleofradiusR = s b velocityv .ThetruncatedMaxwelldistributionistakenintheform 5kpcwiththebubblecenteratthedistanceR fromthecenterofthe e b proposedby(King1966): f(v) [exp( v2/2σ2) exp( v2/2σ2)] 1B0C7Gy.r,Twhheecrehawraecatedroipsttitchaegbeubobfltehirsisbeuvbebloleciitsytvb ∼=23R0b0/vkbm∼s31.3(c×f. forv < ve and f = 0otherwise∝.Adopt−ingσv v=−350km−se−1,i.ve., b − v = 2σ = 700kms 1 wecometotheaveragevelocityv = 400 Churazovetal.2001).Attheradiir<15kpcthestellarcomponent e − s kms 1. inmassiveellipticalgalaxiesdominates(e.g.’Johnsonetal.2009) − Thegeometry of thewindshell that forms asaresult of the and its density distribution can be approximated by the singular interactionofthewindwiththerelativisticmediumdependsonthe isothermalspherewiththevelocitydispersionσ v valueofthedragforceexertedonthewindboundary. Ifthedrag ρ= σ2v =ρ r0 2 , (1) forceisstrongthestrippedwindmaterialcreatesatrailingplume. 2πGr2 0(cid:18)r(cid:19) Ontheotherhand,ifdragforceisveryweak,thenthewindshell whereG isgravitationalconstant andr isaradialscale1.Adopt- moveswiththestarvelocityretainingspherically-symmetricshape 0 ing r = 10 kpc and velocity dispersion σ = 350 km s 1 andeventuallymayescapetherelativisticbubble.Toexplorethis 0 v − (Wu&Tremaine2006)onegetsthestellarmass M(<r )= M = issue we consider major stages of the mass loss at the AGB and 0 0 5.6 1011 M . This value is consistent with estimates of the to- post-AGBstage:(Steffenetal.1998;Louetal.2010):(1)theslow tbaulbmb×laessofofrasdt⊙eiullsarRcom=pon5enktpcofthBeCGsteollfar∼m1a0s1s2 iMn⊙t.hIisnscidaesethies AwGinBd(suta=ge,10i.ek.,m10s−61y,rM,˙(2∼)s1l0o−w7sMup⊙eyrwr−i1n)do(nM˙theti1m0−e5sca1le0−o4fMthe M 9 1010R Mb ,whereR =R /(5kpc). yr−1)duringthelast 104yroftheAGBstage,a∼nd(3)f−astwinda⊙t s ≈The×starsarbe,5pre⊙sumablyobld,5withbanageoft 1010yr,which thepost-AGBstagew∼hichcorrespondstotheplanetarynebula(PN) ∼ stage( 104yr).Thelaststagepracticallydoesnotcontributetothe suggeststhatthecurrentupperlimitofthestellarmassattheAGB ∼ mass loss, but turns out essential for the acceleration of the slow stageis 1M (Schalleretal.1992).AssumingtheSalpeterinitial massfun≈ction⊙dN/dm =Cm αwithintherangem <m<m one wind.Weadopt that 60%of thehydrogen shell islostatthefirst − 1 2 stageand40%atthesuperwindstage(Steffenetal.1998),which getsthenormalizingfactor impliesthemass-lossratesM˙ 3 10 7 M yr 1attheslowwind − − C=(α−2)Ms[m−1(α−2)−m−2(α−2)]−1 =0.28Ms, (2) stageand M˙ ∼ 2×10−5 M⊙ y∼r−1×atthesup⊙erwindstage. Forthe fastwindstageweadoptparametersderivedfromthemodellingof whereα=2.35,m =0.1M ,andm =1M areused. 0.5MThe(Ssatlaarriosfaml.12=0019)M,w⊙hl⊙eilaeve∆smbe=2himndamw⊙hi=te0d.w5aMrfoifsmlowsdti=n tkhmeXs−-1ra(Lyoeumeistsailo.n20o1f0th).eTPhNe:fMa˙st∼w2in×d1p0a−ra8mMe⊙teyrsr−s1uagngdesutt=ha1t5t0h0e thefor⊙mofslow(u ≈ 10−30kms−1)w−indwdduringthe⊙thermally 4to.5tal1k0in45eteircge.nWerhgeynrtrealenassfeerdeddutorinthgetshlioswstwagined(s∼he1ll0w4 iythr)thiseEm3as≈s pulsingAGBstage(Vassiliadis&Wood1993).Thepresentdayin- × of0.5M thisenergyacceleratestheshelluptou 30kms 1,in tegratedrateofthewindmatterinjectionintotherelativisticbubble ⊙ ≈ − accord with the expansion velocities of evolved PN (Richeretal. is 2008). The mass striping rate of the wind shell scales as the shell 1 This approximation breaks at large radii to ensure convergence of the radiussquared,soatthestageofslowwindthemaximalstripping totalstellarmass. isattainedattheendofthisstage.Theradiusofthewindshellat TypeIa supernovaeandstellarwindsin relativisticbubbles 3 thisagecanbeestimatedfromtheenergyarguments.Thekinetic magnetic field (Narayan&Medvedev 2001). For the spectral in- energyofthewindshellisspentonthe pV workagainstexternal dex of relativistic protons > 2 the energy of cosmic rays resides pressure pandontheinternalenergywhichresultsinthestopping in low energy protons, which permits us to use the characteristic radiusofthewindshell energyofrelativisticprotons 1GeV.WithB= 10 5 Gonegets − ∼ r1 ="83π γ−γ1! M1pu21#1/3 =0.19p1−01/3 pc, (4) rg ∼3r2×1011cm.Thediffusiontimeisthen td ∼ rwc =3×106B−51rw2,18 yr, (8) where p = p/(10 10 ergcm 3), γ = 5/3, u = 10 km s 1, and g 10 − − 1 − M1 =0.3M⊙areused. whererw,18 = rw/(1018cm).Fortheslowwindstagewiththefinal Thewindshellmovesasawholetogetherwiththewhitedwarf radiusofr 0.2pcthediffusiontimeiscomparabletothedura- unlessthebulkofthematerialisstrippedintothetrailingplume. tionofthis1s∼tage( 106 yr),whilethelifetimeofsuperwindand ThewindshellstrippingcanbeestimatedfollowingNulsen(1982) fastwindstagesis∼significantlysmallerthanthediffusiontime. considerationofthegasstippingforagalaxymovingintheICM. Theestimatedtimescaleofthecosmicraydiffusionsuggests The turbulent stripping is determined by the combined effect of thatthepenetrationofcosmicraysinthewindcanaffectthewind theKelvin-Helmholtzinstability(KHI)andtherampressuredrag. expansion dynamics at the slow wind stage making the pressure Indeed,KHIbroadenstheboundarylayerwhichresultsinthesu- gradient smoother and thedeceleration lesspronounced. Asare- pressionoftheKHI.Thenetstrippingrate,therefore,iscontrolled sult,thefinalradiusofthewindshellattheslowwindstageinfact bytherampressure couldbesomewhatlarger,r >0.2pc.Ontheotherhand,theeffect 1 M˙ =πr12ρavs =1.6×10−12p110/3 M⊙yr−1, (5) cthaennroolteboefstihgenicfiocsamnitcbreacyaudsiffeuthsieondirffauptiidolnytdimroepsinfcorrelaasregser∝rard12,iusso. whereweuseρa =3p/c2 forthedensityofambientmedium.The We conclude therefore that the stopping radius of the wind shell 1av.2erag1e07reysri,dseontcheetaimboeveofmaaswsilnodsssrhaetelliminptlhieesbthuabtbtlheeiswiRnbd/vshse∼ll A(rGwB∼m0.a5spscl)o,swshanicdhoinmciltusdtehsetchoescmoimcbrainyeddiffeffuesicotno,fiAsaGrBeaasnodnapbolset × loses 2 10−5 M whilemovinginthebubble,negligiblysmall estimate. amoun∼tco×mparedto⊙themassofthewindshell,0.3M . Alternatively, the stripping could be caused by⊙the Alfven wavedrag.Inthisregardwenotethattheinfiniteconductivityap- 2.3 Windshellescape proximation for the wind shell is fully applicable. A conducting Outside the relativistic bubble the wind shell turns out in the in- body moving with velocity v across the magnetic field B experi- tracluster thermal gas. For the mass stripping rate M˙ = πr2ρ v ences the drag force due to Alfven wave generation (Drelletal. w a s adoptingthewindshellradiusr =1.5 1018cm,numberdensity 1965) w × ofinterstellargasn=0.02cm 3,andv =400kms 1oneobtains − s − Fd =(B2/4π)(v/vA)S, (6) M˙ 1.7 10−7 M yr−1.Ittakes3 106yrtocompletelystripthe whereS istheareaoflateralsurfaceperpendiculartoB~,vA isthe c0a.5n∼Mbe⊙owb×tianidnesdheflrlo⊙omvetrhetheeqduiasttiaonnceo×fodfe∼ce1lekrpatci.oTnhoefsthameweiensdtimshaetlel Alfvenvelocity, v B/ 4πρ withρ = 3p/c2.Strictlyspeak- A ≈ a a asawholebydragforceπr2ρ v2.Thewindshellescapingbubble ing, the Alfven velocity ipn the relativisic plasma (Gedalin 1993) w a s isdeceleratedthusinaclosevicinityofthebubbleboundary. is smaller compared to this expression by a factor of 0.7-0.9 de- The average residence time of the wind shell in the bubble pendingontheratioofmagnetictototalpressure;weneglectthis R /v 1.2 107yrissomewhatsmallerthantheageofthefiducial difference.ForasphereoftheradiusrthelateralareaisS 2πr2 b s ∼ × ≈ bubble3 107 yr.Thetotalamountofthewindshellsresidingin andthemassstrippingratecausedbytheAlfvenwavedragis thebubbl×eis,therefore, N˙R /v 107,whilethefillingfactor of M˙ = B22vrAw2 ≈4.1×10−10p710/6B5 M⊙yr−1, (7) tfhe=eNnse(mRb/leRo)f3win1d0s5hpell1s.bintshe∼bubbleis (9) whereB = B/(10 5G).ThestrippingrateduetotheAlfvendrag w w b ∼ − −10 5 − thusturnsouttwoordersofmagnitudelargerthantherateaccord- Theprobabilityofacollisionwiththewindshellisdeterminedby ingtoequation(5).YetevenfortheAlfvendragthemasslostdur- theratioofthebubbleradiusandthemeanfreepath.Thelatteris (ing3th%e)reosfidtehnecweitnimdeshiseloln.lWye∼t0h.u0s1cMon⊙cwluhdiechthiastathsmeawllinfrdacsthieolnl λ=(πrw2nw)−1=64p210/3 kpc (10) lo∼st at the slow wind stage remains almost intact while traveling wherenw = (3/4π)Nw/R3b = 2×10−5 pc−3 isthenumber density acrossthebubble. A similarresult canbe obtained forthesuper- of windshells. Theprobabilityof shell collisionsislow, because windstage.Theoutcomeofacombinedeffectofallthreestagesof theaveragenumberofwindshellsalongthebubbleradiusisonly themasslossisaspherical windshell of0.5 M expanding with τ = Rb/λ = 0.08. Theaverage probability of the collision isap- the velocityof 30 km s 1. Usingequation (4) on⊙e findsthe wind proximately [1 exp( τ)] τ = 0.08.Moreaccurateestimate − ≈ − − ≈ shellstoppingradiusisrw=0.5p1−01/3pc. canbedoneusingexpressionfortheescapeprobabilityofthepho- Theabove treatment of thewinddynamics suggests that the tonfromahomogeneoussphere(Osterbrock1989) cosmic rays diffusion into the shell can be neglected. To check 3 1 1 1 whetherthisassumptionisvalidweassumeBohmdiffusioncoef- p = 1 + + exp( 2τ) , (11) esc 4τ" − 2τ2 τ 2τ2! − # ficientr c/3,wherer istheprotongiroradius.Thisassumptionis g g standardfortheanalysisofcosmicraypropagationandsupported For τ = 0.08 the equation (11) gives p = 0.94. Most of wind esc byobservationaldataonthecosmicrayaccelerationinsupernova shellsthereforeescapethebubblefreelyandonly6%ofwindshells remnants(Stageetal.2006),althoughtheconceptofatangledfield collidewithanothershell. might seriously modify a picture of the cosmic ray diffusion in Thefate of thecollided windshells depends onwhether the 4 N. N. Chugaiet al. tic fluid. Indeed, for SN expanding with the characteristic veloc- ity v (2E/M)1/2 = 109 cm s 1 one readily sees that the ram − ≈ pressure is small compared to the pressure of relativistic fluid: ρv2 = 3p(v/c)2 p. The crucial role of theexternal relativistic ≪ pressure in the SN deceleration is a distinguishing feature com- pared tothestandard case of SNshell inthe ordinary interstellar medium. InouranalysisoftheSNexpansionweassumetheisotropic pressure of the relativistic medium. This is the case, if the mean freepathforrelativisticprotons alongthemagneticfieldismuch lessthantheSNradius.SincetheSNexpandssubsonicallyrelative totheexternalmedium,inwhichthesoundspeedis c/√3,the ≈ strongforwardshockdoesnotform.Thereverseshockobviously forms,becauseouterlayersofejectaaredeceleratedbytheexternal pressureandthevelocityjumpbetweentheundisturbedejectaand swept-up shell exceeds the sound speed in the unshocked ejecta ( 10kms 1).TheSNisfullydeceleratedwhenthereverseshock − ∼ Figure1. Thinshellmodelofsupernovaevolutioninrelativistic bubble. crossesthebulkoftheejectamass. Shownaretheshellradius(a),evolutionofvelocitiesoftheshell(S),pre- ToestimatethestoppingradiusofSNonecanusetheenergy shockvelocityofsupernovaejecta(SN),andreverseshockspeed(RS)(b), considerations likewise wedid for the windshell expansion. The evolutionofthereverseshocktemperature(c),X-rayluminosity(d). initial kinetic energy E of SN should be spent on the PV work againsttheexternalpressureandontheinternalenergy pV/(γ 1) − collision is adiabatic or radiative. With the average relative ve- whichgivesthestoppingradius locity of collision u 560 km s 1 and the wind shell density ∼ − γ 1 3E 1/3 o∼ut20to0bcem−33thee1s0t1im0 sa,tecdomcopoalrianbgletimweithofththeehsyhdorcokdeydnagmasictusrcnaeles rsn =" −γ !4πp# =36p1−01/3 pc. (12) ∼ × rcwo/lluisi∼on3re×gi1m0e10s sa.reTphliasumsiebalen.sItnhattheboatdhiaabdaitaibcactiacseanwdinrdadsiahteilvles Wr i/thvac3hara1c0te3riysrtitcoerjeeaccthavrel,orcaittyhevrs≈ho1r0t9timkmecso−1miptatraekdestotsth∼e approximatelyretaintheirsizesandabsolutevelocities,sotheadia- bsunbble∼life×time. sn baticcollisiondoesnotaffecttheirescape.Inradiativecasecollided Thedynamicsoftheswept-upshellandtheX-rayemissionof shellsmergeandformthindensepancakeofathicknessb≪rwand thereverseshockcanbeillustratedusingamodelbasedonathin densityρc∼(rw/b)ρw,whereρwisthedensityofthewindshellbe- shellapproximation.Thissuggeststhattheshellformedbyejecta forecollision,Thispancakeisliabletofragmentationintoclumps materialflowingintothereverseshockisconsideredasathinshell of size a & b and average velocity ∼ vs/√2. It is easy to verify whichdynamicsisgovernedbythedynamicalpressureoftheSN thatforfragmentswithsizesa & banddensityρc ∼ (rw/b)ρw the ejectaandexternalpressure p = 10−10 ergcm−3.Theequationof stripping(ordeceleration)timeisgreaterthanthestrippingtimeof motionforthethinshellis windshells.Wethusconclude thatthemostof thewindmaterial dv r 2 escapesintothehotICM. M =4πr2 ρ v p , (13) Inouranalysisofthewindshelldynamicsweignoredapossi- dt " (cid:18)t − (cid:19) − # blefragmentationofthewindshellduetotheRayleigh-Taylor(RT) wheretheshellmassisdeterminedbythemassconservation instabilityonthedecelerationoraccelerationstages.Thisomission dM r facilitatestheconsideration;yetitdoesnotaffectthemajorconclu- =4πr2ρ v . (14) sionthatthewindshellmaterialescapetherelativisticbubble.As dt (cid:18)t − (cid:19) wewill see below, the RTfragmentation favoursthe shell matter Theseequationsaresolvednumericallyassumingafreelyexpand- escape. ingSNwiththemassof1.4M ,energyof1.5 1051erg,thedensity distributionρ exp( v/v ),b⊙oundaryveloci×tyof4 104 kms 1, ∝ − 0 × − andinitialouterradiusof1018cm. 3 TYPEIASUPERNOVAEINRELATIVISTICBUBBLE ResultsaredisplayedinFig.1whichshowstheevolutionof the shell radius, velocity of the shell, boundary velocity of SN WithSNIaproduction efficiencyψ = 0.008 per one whitedwarf ejectaandvelocityofthereverseshock,reverseshocktemperature formedinthestellarpopulationofE-galaxies(Pritchetetal.2008) assuming full equilibration, and X-ray luminosity of the reverse andthestellardeathrateinthebubbleoffiducialmodelN˙ =0.83 shock.Themaximalradiusofthethinshellmodelis39pc,slightly yr−1oneexpectsψN˙tb ∼2×105 SNIaexplosionsduringtherela- larger than analytical estimate rsn = 36 pc. Remarkably, the thin tivisticbubblelifetimetb = 3×107 yr.Wenowconsiderindetail shellshowscontractionphase(Fig.1a)whichisadirectoutcome SNexpansionintherelativisticbubbleandanalyseanoutcomeof ofthedynamicalroleoftheexternalpressure.However,sincewe theRayleigh-TaylorfragmentationofdeceleratingSNshell. neglecttheinternalpressureoftheshockedenvelope,theamplitude ofthecontractionphaseinourmodelisexaggerated,sowestopthe computationsatthisphase.TocalculatetheX-rayemissionweas- 3.1 SNexpansion sumethatthehotplasmaintheshellisdistributedhomogeneously Givenasmallnumberofwindshellsalongthebubbleradius(Sec- intheshellwiththethickness∆R/R =0.1.Itisratheracrudeap- tion 2.3) the deceleration of the SN expansion in the relativis- proximationbecausethedensitydistributioninthereverseshockis ticbubble isprobably dominated by thepressure of the relativis- expectedtobeessentiallyinhomogeneouswithapeakatthecon- TypeIa supernovaeandstellarwindsin relativisticbubbles 5 Figure3.Radiusofthecontactdiscontinuity,separatingSNejectaandthe Figure2. DensitydistributionforSNIaenvelopeexpandingintheICMat ICMasafunctionoftime.Fourcurvesshowncorrespondtoexplosionsin theages 60,400,3000,2104 and105 yearsfortheICMtemperatureof theICMwiththesamepressure,butdifferenttemperatures, 0.01,1,100, 0.01keV∼(bottom)andof100keV(top).Positionofasharpwiggleinthe 104keV,frombottomtotop.Clearlythefinalsizeoftheejectaislargestin densitydistributioncorrespondstothecontactdiscontinuityseparatingSN theICMwithhighesttemperature. ejectaandtheICM. tactsurface.YetitisreasonableenoughtogetanideaaboutX-ray tothevaluegivenbythethinshellmodel (Fig.1).TheX-raylu- luminosity within a factor of two. The luminosity is maximal at minosityofthereverseshockinthemodelwith104 keVmedium thecontractionphaseandreaches 4 1033 ergs−1 attheshock isshown inFig. 4together withtheevolutionof theradiiof the ∼ × temperatureof 200keV.Theequilibrationofelectronsandions, reverseshockandcontactsurface.Theluminosityevolutioniscon- ∼ however, isan oversimplification, so the shock electron tempera- sistent with the prediction of the thin shell model (Fig. 1) at the tureandtheluminosityshouldbeconsideredapproximate. ages. 6 103 yr.However,atthefinalstageoftheejectadecel- × AnotherinterestingviewontheSNexpansiondynamicsinthe eration (t & 104 yr) the luminosity behavior differs from that of relativisticbubblegivesusone-dimensionalhydrodynamicsimula- thethinshellmodel.Indeedatthisphasetheshockedgascannotbe tionsinwhichweassumeahotrarefiednon-relativisticplasmato treatedasthinshell.Afterabout104yrthereverseshockattainsthe beaproxy fortherelativisticfluid.Thethermalpressureistaken center.Thisisaccompaniedbytheoverallcontraction;asaresult thesamep=10−10ergcm−3.TheICMtemperaturevariesindiffer- theemissionmeasureincreasesandtheluminosityattainsmaximal entrunsfrom10−2 upto104 keV2.ForT =104 keVthesituation value 3 1033ergs−1.Thisisfollowedbytheexpansionwhichre- ∼ × isclosetothecaseoftherelativisticmediumbecausethethermal sultsintheluminositydrop.Atthemostluminousphase,L &1033 x pressure exceeds the dynamical pressure in the upstream flow of ergs 1,theSNIaremnantlives 4 103 yr.Thetemperatureof − ∼ × theforwardshock.Weassumehomologousexpansionoftheenve- theshockedejectaatthisphaseisintherangeof108 109 K,so − lopev randmodeltheinitialdensitydistribution10yearsafter onlyasmallfractionofthetotalluminosity(10 30%)fallsinto theexp∝losionasρ∝e−r/r0,wherer0 =310−5 pc.Theejectamass thestandardChandraband(0.2-10keV). − is1.4M andkineticenergyis1.5 1051erg,whilethemaximum Generally,theSNexpansiondynamicscanbeaffectedbythe expansio⊙nvelocityissetto2104km×s−1. diffusionofrelativisticprotonsintotheejecta.Thisprocessmight The dependence of theexpansion dynamics onthe tempera- modifydynamicsbysmoothingoutthepressurejumpatthebound- tureoftheICM(atthesamepressure)isapparentfromFig.2.In arybetweenejectaandrelativisticfluid.Thetimeittakestofillthe thelowtemperaturecase(bottompanel inFig. 2)mostofejecta SNbycosmicrayswiththeenergyEperparticlecanbeestimated energyisspentonaforwardshock,whichisbarelyresolvedinour asthetimefortheprotontoescapefromtherelativisticbubblelayer simplesimulations.Bycontrast,forthehightemperatureICMal- adjacenttoSN.ThevolumecomparablewithSNofradiusRisa most alltheinitialkineticenergyiseventuallyconverted intothe sphericallayerofathicknessof 0.3R.AssumingBohmdiffusion ∼ enthalpyoftheejectaandonlytinyamountofenergyisdeposited coefficientD=cr /3onegetsthediffusiontime g intheforwardshock.Accordinglythefinalsizeoftheenvelopeat theboundaryseparatingejectaandICMismuchlargerforthehigh (0.3R)2 R 2 t =1.5 109B yr, (15) temperature run. Thisis further illustratedin Fig. 3, showing the d ∼ 4D × 5 30pc! timedependenceoftheenveloperadius.Thesimulationsshowthat ThetimeittakestofilltheSNbycosmicraysattheessentialde- in the limit of very hot ICM the final envelope radius converges celeration epoch turns out tremendous compared to the SN age ( 3 103 yr). We conclude, therefore, that the diffusion pene- ∼ × 2 Weusenonrelativisticequationofstateintheseillustrativerunsevenfor trationofrelativisticprotonsintotheSNenvelopeunlikelyaffects Te=104keV,althoughthisnotvalidforelectrons. theSNexpansiondynamics. 6 N. N. Chugaiet al. intheslowbulkmotionatthedistancetentimeslargerthaninthe maximumradiusattainedinthehighspeedenvelopeexpansion. 3.3 Rayleigh-Taylorinstabilityandspikedeceleration The swept-up SN shell decelerating in the light relativistic fluid is liable to the Rayleigh-Taylor instability (RTI) which generally shouldresultinthefragmentationofSNshell,closetothestageof thesignificandeceleration,i.e.,ataboutthestoppingradiusr .The sn situationissimilar,albeitinvertedwithrespecttoCrabnebular.The Crabshellacceleratedbytheshockedrelativisticwindshowslong thinRTspikesdirectedbackwardthecenter(Hesteretal.1996).In caseof decelerated SN dense RTspikes protruded forward could travellargedistancesbeforetheystop.Yetitshouldbeemphasised thedifferencewiththeCrab.InthelattercasetheSNmaterialpres- surizedbytherelativisticplasmaiscoolwiththethermalvelocity u 10kms 1.TheSNIamaterialintheadiabaticreverseshock crab ∼ − ishotwiththethermalvelocityu 104kms 1.Thedensitycon- sn ∼ − trastintheCrabisthereforebyfactor(u /u )2 106larger. sn crab ∼ Figure4.X-rayluminosityofthereverseshockinthemodelwiththeICM The behavior of RT spike may be affected by the KHI. For temperatureof104keV(top)andtheradiiofthecontactdiscontinuityand acylinder spikeof theradiusamoving withthevelocityvalong reverseshock(bottom).Theluminositydecreasesafter 104yrbecauseof itsownaxistheperturbationgrowthtimeforthemostdestructive ∼ thesignificantexpansionofthepostshocklayerbetweenthereverseshock wavenumber k 1/a ist (a/v)χ1/2, where χisthedensity (bottom,lowercurve)andthecontactsurface(uppercurve). ∼ KH ∼ ratio of SN and bubble material. At the SN radius R = 20 pc the contrast χ 105. The distance at which the most dangerous ∼ 3.2 SNbulkmotion modegrowsisthen ∼ vtKH ∼ a√χ ∼ 300a. Wedonot awareof anymulti-dimensionalhydrodynamicsimulationsofadensecloud AftertheexpansionbrakingtheSNshellstillretainsthebulkmo- movinginararefiedrelativisticfluid.Acloseanalogueisthetwo- tionwiththetypicalvelocityv = 400kms 1.Ifthedeceleration dimensional hydrodynamic simulations of a dense cloud moving s − ofthebulkmotionwerenegligible,theSNshellwouldescapethe inthepost-shockintercloudrarefiedgas(Kleinetal.1994).These relativisticbubbleaftertheaverageresidencetimeR /v 107 yr. simulationsshowthatthecloudlifetimewithrespecttothefrag- Wenowcheck,whethertherampressureandtheAlfvbensw∼avedrag mentationandfragmentdecelerationisorder 4(a/v)χ1/2,roughly ∼ cansubstantiallydeceleratethebulkmotioninsidetherelativistic four times larger than the Kelvin-Helmholtz time. Adopting this bubble. characteristictimeonefindsthatthedistanceatwhichthespikewill TherampressuredragforceexertedontheSNshellisF = bedestroyedanddeceleratedis 4vt 4aχ1/2 103a.Assum- d ∼ KH ∼ ∼ πr2snρav2,wheretheambientdensityisρa =3p/c2,assumingparti- inga/R∼10−2,comparablewiththefingersincaseofCrabnebula clesdominateinthepressure.Usingtheequationofmotion (Hesteretal.1996),onefindsthatRTspikecantravel 10R.0.3 ∼ kpc,rathersmalldistancecomparedtothebubbleradius. dv M = πr2ρ v2, (16) Ontheotherhand,Nulsen(1982)arguesthattheincreaseof dt − sn a thewidthoftheboundarylayerduetotheKHIquenchesthevery thecharacteristicdecelerationlengthcanbeestimatedas instability.Asaresultthemasslossissuppressed and eventually Mc2 isdefinedbythemomentumtransfer[cf.equations(5)and(7)].In ld ≈ 3πr2 p ≈69p1−01/3 kpc. (17) thiscasetheproblem of massstrippingdue toKHI isreduced to sn theproblemofadecelerationofRTspikeswhichisanalysedinthe ThisshowsthatthedecelerationofthebulkmotionofSNbythe nextsection. rampressurecanbeneglected. The longitudinal magnetic field also can suppress the KHI. The Alfven wave drag exerted on the spherical SN shell Let ρ and ρ be thedensity of rarefied and dense fluid. Accord- 1 2 is defined similarly to the case of the wind shell, i.e., Fd = ing to the criterion of the KHI in the presence of magnetic field (1/2)B2(v/vA)r2sn. The chracteristic deceleration time is td ≈ Chandrasekhar (1961) the condition that the magnetic field turns vsM/Fd,whilethedecelerationlength,ld ≈vstd,is offtheKHIis ld ≈ Br2sMn v1sc2πp ≈0.3vs,400B−51p110/6 kpc, (18) B>(2πρ1)1/2v=(6πp)1/2(cid:18)vc(cid:19)≈1.4×10−6 G, (19) p wherevs,400 = vs/(400kms−1).Thisshowsthat theAlfvenwave where p=10−10ergcm−3,cisthelightspeed,andv=109cms−1 drageesentiallybrakesthebulkmotionoftheSNshellatthedis- areused.Therequiredmagneticfield B > 1.4 10 6 Giswithin − × tancemuchsmallerthantheradiusoftherelativisticbubbleeven therangeoffieldstrengthintherelativisticbubble,whichcanbe forweakfieldB 3 10 6G.Wethusconcludethattheejectaof aslargeasseveral10 5G.ThemagneticstabilizationofRTspikes − − ∼ × SNIaexplodedintherelativisticbubblecannotescapethebubble againstKHIthusseemsquiteplausible. Hereafterweaddressthe duetothebulkmotion.Amazingly,theSNmaterialisdecelerated decelerationofRTspikeassumingitsstability. TypeIa supernovaeandstellarwindsin relativisticbubbles 7 3.3.1 Dragincollisionlesscase fieldso,onlyasmallfractionofRTspikesexperiencesthistypeof adeceleration. A typical RTspike isassumed tobe a cylinder with themass m, radiusa,andlengthb,whichareassumedtoremainconstant.The RTspikepesumablymovesalongtheaxisintherelativisticplasma dominated by the relativistic particles. With the giroradius rg ∼ 3.3.2 Dragincollisionalcase 3 1011 cmandtheRTspikeradiusa 10 2r 1018 cmonly × ∼ − sn ∼ Ifthemeanfreepathforcosmicrayprotonsissmallλ a,one amotionalongtheregularmagneticfieldcanbecollisionless.The ≪ expectsthatthedragforceshouldbeproportionaltov2.Thegen- meanfreepathforrelativisticprotonspropagating alongthefield eralconditionforthatisthelargeReynoldsnumber Re> 102.To canbeconstrainedbyscatteringontheperpendicularcomponentof estimateReweadoptthespikeradiusa 10 2r 1018 cm,the arandomfield.TheresultingmeanfreepathalongthemeanfieldB ∼ − sn ∼ isλ r (B/δB)2(Strongetal.2007),whereδBistheamplitudeof spikevelocityv=109cm,andλ=rgasthemeanfreepathforrel- araknd∼omg fieldwithresonancewavenumberkresrg ∼ 1.Following gateitvsisRtiec=p3roatvo/ncsr.Ass3um1in0g5.BTh=ec1o0n−5diGtio,ni.eR.,er>g1∼023t×hu1s0i1s1fcumlfilolnede Strongetal.(2007)weassumethepowerlawspectrumofrandom g ∼ × fieldenergydensityW(k) k−s with s = 1.67,betweenmaximal forλ<3×104rg ∼1015cm,whichisrathersoftrequirement. ∝ In the collisional approximation the drag force is F = lengthscalek 1/R andandminimalscalek 1/r .The d min ∼ b max ∼ g 3πa2p(v/c)2.Followingtherecipeoftheprevioussectiononeob- integratedenergydensityisnormalizedaccordingtosuggestionby Strongetal. (2007): W = B2/(8π). With these prerequisites one tainsthespikedecelerationdistance ucgmnetc,seir(.teδa.Bi,n/λtBike)&s2or∼fg.t(hTkehmreine/slkeitvrueasa)ntsti−o1pna∼rtahmu1s0e−ties7rasabndodouλtnkcoot∼lplirs1ei0col7nurldgees∼sc,oa3lllti×hsio1ou0ng1ah8l ld ≈ 59ηrsn(cid:18)cv(cid:19)2 . (23) regimeaswell.Oneneedsthereforetoconsiderbothcollisionless Forv=109cms−1andrsn =36pconeobtainsld ∼17ηkpc,rather andcollisionalcases. largevaluethatexceedsbubbleradius(5kpc)evenformodestvalue Forb athemomentexchangeoccursprimarilyviathecos- ofη 1.TherampressuredragthusalmostdoesnotdecelerateRT mic ray co≫llisions with the lateral surface of the spike. The mo- spike∼sinsidetherelativisticbubble. mentumtransferredtothecollidingparticlewiththeenergyE as- suming diffusive reflection, is (E/c2)v. For theparticleflux on ∼ theunitofsurfacearea(1/4)nc,wherenisthecosmicrayconcen- 3.3.3 Alfvenwavedrag tration,themoment transferredpersecond toallthestrikingpro- tons(dragforce)isF = (1/2)πabǫ(v/c),whereǫ = 3pistheen- TheAlfven wavedrag can operate for thelarge conducting body d ergydensityofrelativisticparticles.Notethatthedragforcecould a > (v/c)r 1010 cm,whichiseasilymetforRTspikes. Using g ∼ be derived also using average energy gain of a relativistic parti- theexpressionforthepowerradiatedintheformofAlfvenwaves clepercollisionwiththecloud E(v/c)2 (Fermi1949).Indeed,for Drelletal.(1965))one canwritetheAlfvendrag forceacting on a spherical cloud the total energy loss per second in that case is theplasmaspikewiththeradiusaandlengthbas πa2ncE(v/c)2 = πa2ǫv2/c.Thisimplies thedrag force πa2ǫ(v/c), B2 v mwhetircihcaclofiancctiodre.swiththeaboveexpressionfor Fd withinthegeo- Fd = 2πvAab, (24) Theequationofmotionofthespikeinthecollisionlesscase wherev = B/ 4πρ isthe Alfvenvelocity. Note, it isonly the withtheabovevalueofF thenreads A a d lateralsurfacearpea( 2ab),thatmatters.Followingargumentsof ≈ dv v theprevioussectionsonegetsthespikedecelerationdistance m = 1.5πabp . (20) dt − c π 3/2 √pac a Weneglectherethehead-oncollisionswhichwouldcontributethe ld ≈5ηrsn(cid:18)3(cid:19) B bv =6ηbB−51p11/06 kpc. (25) term of the order a/b 1 in the right hand side. Note, the transitionfromspik∼etothe≪spherical blobcorresponds tob = 2a For fiducial model p = 10−10 erg cm−3, B = 10−5 G, v = 109 in the drag force expression. The characteristic time of the spike cm s−1 one obtains ld ≈ 6η(a/b) kpc. This result shows that in decelerationisthus case a = b the blob can travel the distance exceeding the radius oftherelativisticbubbleevenformoderatevaluesofη > 2.Fora 2 mc t . (21) longspike(b a)decelerationisbyfactorb/astronger andthe d ∼ 3πabp ≫ decelerationdistanceisaccordinglyshorter.Forb/a 10andη ∼ ∼ The ratio m/πa2 can be expressed via the surface density of the 10theRTspikecantravel 6kpc,adistancecomparablewiththe ∼ SNshell atthestopping radiusasm/πa2 = ηM/4πr2sn,wherethe adoptedbubbleradiusRb =5kpc.IttakesroughlyRb/v∼5×105 parameterη 1becausethespikeisformedbyashellpatchwith yrforthespiketoreachthethebubbleboundaryassumingthespike theradius ≫a.Thedecelerationdistanceforthespikeisthen averagevelocityof104kms−1. ≫ TheeffectoftheAlfvenwavedragisdeterminedbythemag- 10 ca a ld =vtd ∼ 9 ηrsnvb =1.2ηb kpc, (22) neticfield.Ifthefieldisweak, B = 3×10−6 G,thedeceleration distance is 18 kpc, substantially larger than the bubble radius. ∼ where we make use of equation (12) and adopt v = 109 cm s 1 On the other hand, for B > 10 5 G the deceleration distance is − − and r = 36 pc. For η 10 and a/b 0.1the spike can travel smallerthan thebubbleradius andsignifican amount of RTfrag- sn ∼ ∼ 1kpcbeforeitgetscompletelydecelerated.Incollisionlesscase mentswillremainintherelativisticbubble.Theescapeprobability ∼ theRTfragmentsaredecelerated efficientlyinside therelativistic forRTspikeincaseofB=10 5Gcanbeestimatedadoptingmean − bubble.Itshouldbestressed,however,thatthecollisionlessregime freepathλ=vt =6kpc,i.e.,τ=R /λ=5/6.Equation(11)gives d b canberealizedonlyinthecaseofthemotionalongthemagnetic inthiscasetheescapeprobability p 0.6. esc≈ 8 N. N. Chugaiet al. [t] shouldbecomparedwiththemassoftheICMgas,whichisalready there.ForR =5kpcandhydrogennumberdensityn=0.02cm 3 Table1.Parametersoffiducialmodel b − themassoftheICMintheboundarylayerwiththethicknessl =1 w kpcis7 107 M ,i.e.,factor 5largerthanthemassdeposited Parameter Description Value × ⊙ ∼ bythewindshells.Thedepositedwindmassscaleswiththebub- bleradiusas R4,whereastheICMmassinthelayeris R2.We Rb Bubbleradius 5kpc thusconclude∝thabtforthefiducialmodelthewindmaterial∝escabping tpb PArgeessure 1031×0e1r0g7cymr 3 therelativisticbubbledoesnotchangesignificantlythedensityof B Magneticfield −10 5G − thesurroundingICM;moreovertheeffectevensmallerincaseof − n NumberdensityofICM 0.02cm−3 M87inwhichbubbleradiusRb∼1.4kpc.Theeffectoftheenergy Ms Stellarmassinthebubble 9 1010M deposition by the escaping wind shellsis alsonegligible because N˙ Stellardeathrate 0×.83yr 1⊙ thebulkvelocitiesofthewindshellsissubsonicandthedeposited − N˙sn SNIarate 0.0066yr−1 massislow.ThechemicalcompositionofICMisnotaffectedby rw Windstoppingradius 0.5pc theescapingwindshellseither. rsn SNstoppingradius 36pc Unlike the windshells, fragments of SN ejectaescaping the relativisticbubblemayhaveaprofoundeffectontheenrichmentof ICMbyironpeakelements.Theresultingabundanceisdetermined 3.3.4 Spikedecelerationbywindmaterial by the width of the mixing layer. Generally, one should consider time-dependentmodeloftheformationofmixinglayer.However, Theaveragenumber of windshellsalong theaverage distanceto weassumethatthemixinglayerinthefiducialmodelisformedby thebubbleboundaryforthefiducialmodelis 0.08(Section2.2) ∼ thecumulativeeffectofallSNe.Emploingthemomentumconser- whichmeansthatforSNfragmentstheprobabilitytocollidewitha vationargumentsadecelerationdistancefortheRTspikeentering windshellislow, 0.06.Aquestionarises,whathappens,anyway, ifthecollisiontak∼esplace. theICMwiththevelocityvi anddecelerateddowntovf turnsout tobe Thedecelerationisdeterminedbytheratioofcolumndensi- ties(µ)oftheprojectile(RTspike)andtarget(windshell).Forthe M l ηln(v/v ) 0.5η pc, (27) windshell sn ∼ i f 4πr2snρ ≈ m µw= πrww2 =1.4×10−4 gcm−2, (26) 3w6hperce.Fwoeruηs=ed1v0i/ovnfe=ge2ts0,thne=de0c.e0le2ractmio−n3,leMng=th1ls.n4∼M5⊙,pacn.dAtrsfinrs=t wherer =1.5 1018 cmandm =0.5M areused.Thecolumn glance the mixing layer could be identified with the deceleration dTehnissictyomwofpathriesosnp×iksheoµwss=thηatMt/h(e4wπspri2skn)e∼wi2ll⊙×be10fu−l8lηygdeccmel−e2ra≪tedµiwn. mlayasesr.pTrohdisulcaeyderbycoSnNtaIinasduMriicnmg∼th7el×ife10ti5mMe⊙ofotfhtehbeuIbCbMlegisasM.sTnh∼e asinglecollisionwithawindshell.Weconcludethereforethatfor 3 105 M .IfmostoftheSNmassescapesthebubble,theamount thefiducialmodelthereisnon-negligibleprobability, 0.06,that of×escapin⊙gironinthemixinglayerturnsouttobe 105 M which the spike will be decelerated in the bubble via collisi∼on with the correspondstotheironabundance 80 (solar). ∼ ⊙ ∼ × windshell. Ontheotherhand,themixinglayercouldbebroaderbecause thetotalvolumeofshockedSNfragmentsinpressureequilibrium substantiallyexceedsthevolumeofthedecelerationlayer.Simple estimatebaseduponthepressureequilibriumsuggeststhetotalvol- 4 DISCUSSION umeoccupiedbyshockedSNejectatobeV = N E/pwhichim- t sn Theaimofthispaperhasbeentogetanideaonwhathappensto pliesthelayerwidth 300pc.Ifthisisidentifiedwiththewidthof ∼ thematterejectedbythestellarpopulationofBCGembeddedinto themixinglayerthantheironabundancewillbefactortwolarger abubbleofrelativisticplasma.Wehavefoundthattheexpansionof comparedtosolarabundanceofpre-existingICM.Theincreaseof awindenvelopelostbyastarisstoppedbythepressureoftherela- theironabundance byfactor twochanges the0.6-2keV emissiv- tivisticfluidwhentheradiusattains 0.5pc.Becauseofthesmall ity3byfactorsof1.8,1.5and1.3forthegastemperatures1,2and sizeofthewindshellitsbulkmotion∼isnotdeceleratedneitherby 3keVrespectively. therampressure,norbytheAlfvenwavedrag,sotheshellescapes Thelatterestimatessuggestcompletemixingofinjectediron thebubbletogetherwiththeparentstar.TheSNIaexplodinginthe withtheICM,whichmaynotbethecase.Thepointisthatthede- relativisticfluidexpandsuptomuchlargerradius 30 40pcand celerationofSNfragmentsintheICMresultsinthestrongheating itsbulkmotioncanbeefficientlydeceleratedby∼theA−lfvenwave oftheejectamaterialuptotemperaturecorrespondingtoitskinetic drag.UnlessaRTinstabilityoperates,theSNmaterialwouldnot energy.Mostoftheironthereforeendsupinthehighentropy/low escape therelativisticbubble, butwillinsteadbeadvected bythe densitygaswiththeverylittleX-rayemission.Theobservational buoyantlyrisingrelativisticfluid. outcomethuscriticallydependsonthemixingdegreebetweenhot The RT instability can strongly modify the behavior of the SNgasandtherelativelycoolICM. ejecta.Intheframeworkofourfiducialmodelwefindthatsignifi- Theabovepictureofmixinglayerisverycrudeandonecan- cantfractionofSNfragmentsescapestherelativisticbubble.Inour notruleoutapossibilitythattheexpandingrelativisticbubblecon- analysisofthisscenariowerelyonthefiducialmodelparameters tinuouslycatchesupwiththemixinglayerouterboundarysothat outlinedinTable1.Agaslumpcrossingthebubbleboundaryand mostofthedeceleratedSNmaterialinjectedintheICMeventually enteringtheICMisdeceleratedaftersweepingtheICMmasscom- parablewithitsownmass.Theescapingwindshellgetsdecelerated inthethermalplasmaofICMatthelengthoflw ∼ 1kpc(Section 3 0.6-2keVistheenergyrangewherepresentdaygrazingincidenceX-ray 2.2). The winddeposits 1.4 107 M inthislayer. Thisvalue telescopesaremostsensitive ∼ × ⊙ TypeIa supernovaeandstellarwindsin relativisticbubbles 9 turns out engulfed by the relativistic fluid. Qualitatively this sce- Forman,W.,Nulsen,P.,Heinz,S.,Owen,F.,Eilek,J.,Vikhlinin, nariothengetssimilartothecasewhenSNIaejectabulkmotion A.,Markevitch,M.,Kraft,R.,Churazov,E.,Jones,C.2005,ApJ, isdeceleratedwellinsidethebubble.InthiscasenostrongX-ray 635,894 emission is expected from fully expanded shells (because of the Forman,W.,Jones,C.,Churazov,E.,Markevitch,M.,Nulsen,P., verylowgasdensity). Thefateoftheirongenerated bySNIain Vikhlinin,A.,Begelman,M.,Bo¨hringer,H.,Eilek,J.,Heinz,S., thisscenariosolelydependsontheevolutionofrelativisticplasma, Kraft,R.,Owen,F.,Pahre,M.2007,ApJ,665,1057 which can escape the central region of the galaxy, as suggested Gedalin,M.1993,Phys.Rev.E,43,4354 by observations of e.g. M87 (Churazovetal. 2001; Formanetal. Gull,S.F.,Northover,K.J.E.1973,Nature,244,80 2005). Hester, J. J., Stone, J. M., Scowen, P.A., et al. 1996, ApJ, 456, 225 Huang,Z.,Sarazin,C.1998,ApJ,496,728 Johnson, R., Chakrabarty, D., O’Sullivan, E., Raychaudhury, S. 5 CONCLUSIONS 2009,ApJ,706,980 Weconsider theoutcome of themass ejectionbystarsviawinds King,A.R.1966,AJ,71,64 and supernovae inside a bubble of relativistic plasma inflated by Klein,R.I.,McKee,C.F.,Colella,P.1994,ApJ,420,213 anAGNinthecoreofBCG.Windshellsarelikelytoescapethe Lou,Y.-Q.,Zhai,X.2010,MNRAS,408,436 relativistic bubble and deposit their mass in the ICM within 1 Mathews,W.G.,Brighenti,F.2003,ApJ,599,992 ∼ kpc from thebubble boundary. SN Iaexploded inside the bubble McNamara,B.R.etal.2000,ApJL,534,L135 is efficiently decelerated owing to the pressure of the relativistic Narayan,R.,Medvedev,M.V.2001,ApJ,562,L129 fluid.IftheSNshellsremainspherical untiltheexpansion of the Nulsen,P.E.J.1982,MNRAS,198,1007 envelope stops and do not fragment, then they would not escape Osterbrock,D.E.1989.Astrophysicsofgaseousnebulaeandac- thebubble.InthiscasetheironproducedbySNIaisadvectedby tivegalacticnuclei.Universitysciencebooks,p.385 therelativisticplasmaandmayleavethecentralregionoftheBCG Pritchet,C.J.,Howell,D.A.,Sullivan,M.2008,ApJL,683,L25 togetherwithbuoyantlymovingbubbles. Richer,M.G.,Lopez,J.A.,Pereyra,M.,Riesgo,H.,Garcia-Diaz, As a possibility we consider a scenario in which the RT in- M.T.,&Baez,S.-H.2008,ApJ,689,203 stability of the SN envelope at the deceleration phase breaks the Salaris,M.,Serenelli,A.,Weiss,A.,MillerBertolami,M.2009, shellintomultitudeofRTspikes.Theanalysisofthedeceleration ApJ,692.1013 of RTspikes intherelativisticfluidshows that theSNfragments Sanders J. S., Fabian A. C., Heating versus Cooling in Galax- areabletoescapethebubble.Thefragmentsaredeceleratedinthe ies and Clusters of Galaxies, ESO Astrophysics Symposia, ICMinaclosevicinityofthebubbleboundarythusproducingFe- Springer-VerlagBerlinHeidelberg,2007,74 richlayer.IntheoptimisticscenariothisFe-richlayercanenhance Schaller,G.,Schaerer,D.,Meynet,G.,Maeder,A.1992,A&AS, X-ray emission around bubbles of relativistic plasma, producing 96,269 brightrimsaroundbubbles. Stage,M.D.,Allen,G.E.,Houck,J.C.,Davis,J.E.2006,Nature Phys.,2,614 Steffen,M.,Szczerba,R.,Schoenberner,D.1998,A&A,337,149 Strong, A. W., Moskalenko, I. V., Ptuskin, V. S. 2007, ARNPS, 6 ACKNOWLEDGEMENTS 57,285 We are grateful to Nail Inogamov and Sergey Sazonov for use- Vassiliadis,E.,Wood,P.R.1993,ApJ,413,641 ful discussions, and to Ewald Mu¨ller for sharing hydrocode. NC Wu,X.,Tremaine,S.2006,ApJ,643,210 thanksWolfgangHillebrandtfortheinvitationtoMPA.Thework was partly supported by the Division of Physical Sciences of the RAS (the program “Extended objects in the Universe”, OFN-16) andtheprojectNSH-5069.2010.2. REFERENCES MatthewsJ.M.,KurtzD.W.,MartinezP.,1999,ApJ,511,422 Birzan, L., Rafferty, D. A., McNamara, B. R., Wise, M. W., Nulsen,P.E.J.2004,ApJ,607,800 Bo¨hringer,H.,Voges,W.,Fabian,A.C.,Edge,A.C.,Neumann, D.M.1993,MNRAS,264,L25 Chandrasekhar, S.1961. Hydrodynamic and hydromagnetic sta- bility.OxfordUniversityPress Churazov,E.,Forman,W.,Jones,C.,Bo¨hringer,H.2000,A&A, 356,788 Churazov,E.,Bru¨ggen,M.,Kaiser,C.R.,Bo¨hringer,H.,Forman, W.2001,ApJ,554,261 Drell,S.D.Foley,S.D.,Ruderman,M.A.1965,JGR,70,3131 Fabian, A. C., Sanders, J. S., Crawford, C. S., Conselice, C. J., Gallagher,J.S.,Wyse,R.F.G.2003,MNRAS,344,48 Fermi,E.1949,PhRv,75,1169

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.