RESEARCH ARTICLE crossm Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris AnthonyR.Miller,aJustinA.North,aJohnA.Wildenthal,aF.RobertTabitaa aDepartmentofMicrobiology,TheOhioStateUniversity,Columbus,Ohio,USA D o ABSTRACT 5=-Methyl-thioadenosine (MTA) is a dead-end, sulfur-containing me- w tabolite and cellular inhibitor that arises from S-adenosyl-L-methionine-dependent reac- nlo tions. Recent studies have indicated that there are diverse bacterial methionine a d salvage pathways (MSPs) for MTA detoxification and sulfur salvage. Here, via a com- e d bination of gene deletions and directed metabolite detection studies, we report that f under aerobic conditions the facultatively anaerobic bacterium Rhodopseudomonas ro m palustris employs both an MTA-isoprenoid shunt identical to that previously de- scribed in Rhodospirillum rubrum and a second novel MSP, both of which generate a h t t methanethiol intermediate. The additional R. palustris aerobic MSP, a dihydroxyac- p : / etone phosphate (DHAP)-methanethiol shunt, initially converts MTA to 2-(methylthio) /m ethanol and DHAP. This is identical to the initial steps of the recently reported b anaerobic ethylene-forming MSP, the DHAP-ethylene shunt. The aerobic DHAP- io . a methanethiol shunt then further metabolizes 2-(methylthio)ethanol to methanethiol, s m which can be directly utilized by O-acetyl-L-homoserine sulfhydrylase to regenerate . o methionine. This is in contrast to the anaerobic DHAP-ethylene shunt, which metab- r g olizes 2-(methylthio)ethanol to ethylene and an unknown organo-sulfur intermedi- / o ate, revealing functional diversity in MSPs utilizing a 2-(methylthio)ethanol inter- n mediate. When MTA was fed to aerobically growing cells, the rate of volatile meth- A p anethiol release was constant irrespective of the presence of sulfate, suggesting r a general housekeeping function for these MSPs up through the methanethiol il 1 production step. Methanethiol and dimethyl sulfide (DMS), two of the most im- 0 , portant compounds of the global sulfur cycle, appear to arise not only from ma- 2 0 rine ecosystems but from terrestrial ones as well. These results reveal a possible 1 9 route by which methanethiol might be biologically produced in soil and freshwa- b ter environments. y Received26February2018 Accepted9 g IMPORTANCE Biologically available sulfur is often limiting in the environment. March2018 Published10April2018 u e CitationMillerAR,NorthJA,WildenthalJA, Therefore, many organisms have developed methionine salvage pathways (MSPs) to s TabitaFR.2018.Twodistinctaerobic t recycle sulfur-containing by-products back into the amino acid methionine. The met- methioninesalvagepathwaysgeneratevolatile abolically versatile bacterium Rhodopseudomonas palustris is unusual in that it pos- methanethiolinRhodopseudomonaspalustris. mBio9:e00407-18.https://doi.org/10.1128/ sesses two RuBisCOs and two RuBisCO-like proteins. While RuBisCO primarily serves mBio.00407-18. as the carbon fixation enzyme of the Calvin cycle, RuBisCOs and certain RuBisCO-like EditorColleenM.Cavanaugh,Harvard proteins have also been shown to function in methionine salvage. This work estab- University lishes that only one of the R. palustris RuBisCO-like proteins functions as part of an Copyright©2018Milleretal.Thisisanopen- accessarticledistributedunderthetermsof MSP. Moreover, in the presence of oxygen, to salvage sulfur, R. palustris employs theCreativeCommonsAttribution4.0 two pathways, both of which result in production of volatile methanethiol, a key Internationallicense. compound of the global sulfur cycle. When total available sulfur was plentiful, meth- AddresscorrespondencetoF.RobertTabita, [email protected]. anethiol was readily released into the environment. However, when sulfur became Thisarticleisadirectcontributionfroma limiting, methanethiol release decreased, presumably due to methanethiol utilization FellowoftheAmericanAcademyof toregenerateneededmethionine. Microbiology.Solicitedexternalreviewers: MaryAnnMoran,UniversityofGeorgia;Judy Wall,UniversityofMissouri-Columbia. KEYWORDS Rhodopseudomonaspalustris,methanethiol,methioninesalvage ® March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 1 ® Milleretal. Inallcells,specificmetabolicreactionsareessentialtomaintainintracellularorganic sulfur pools. For example, synthesis of sulfur-containing amino acids L-cysteine and L-methionine,coenzymessuchasthiamineandcoenzymeA,andcosubstratessuchas glutathioneandS-adenosyl-L-methionine(SAM)(Fig.1;compound2)requiressulfurin theproperoxidationstate.Intheenvironment,thetotalconcentrationofsulfur,usually intheformofsulfate,canbequitelow,includinginsuchenvironmentsasfreshwater (~100(cid:2)M),anoxicbogs(~20(cid:2)M),andfloodedsoilecosystems(20(cid:2)Mto20mM)(1–5). Thus, in order to maintain proper intracellular organic sulfur levels, organisms have developed salvage pathways for recycling dead-end sulfur-containing by-products arising from key metabolic reactions. For example, nearly all organisms possess the active methyl cycle (6) to regenerate L-methionine from S-adenosyl-L-homocysteine, which is a by-product of SAM-dependent methyltransferase reactions. Similarly, SAM also serves as a cosubstrate for synthesis of polyamines (6), 1-aminocyclopropane-1- D carboxylate (the ethylene precursor of plants) (7), acyl- and aryl-homoserine lactone o w quorumsensingcompounds(8),phytosiderophores(9),andcertainbetainelipids(10). n As a result of these reactions, the inhibitory and dead-end by-product 5=-methyl- lo a thioadenosine(MTA)isformed(Fig.1;compound3). d e Intracellular buildup of MTA can result in cell cytotoxicity (6). Therefore, nearly all d organisms, save some obligate endosymbionts/pathogens, possess either MTA/S- f r o adenosylhomocysteine(SAH)nucleosidase(MtnN)(Fig.1;enzymeB)orMTAphosphor- m ylase (MtnP) (Fig. 1; enzyme D) for the hydrolysis or phosphorolysis of MTA to h 5-(methylthio)ribose or 5-(methylthio)ribose-1-P (P, phosphate), respectively (6, 11). tt p OrganismssuchasEscherichiacolithatliveinsulfur-richenvironmentssimplyexcrete5- : / / (methylthio)ribose(Fig.1;compound4)intotheenvironmentattheexpenseoforganic m b sulfur (12). However, given that many organisms encounter sulfur-limiting environ- io ments, further recycling of MTA to regenerate a usable sulfur source, typically . a L-methionine,isnecessarytomaintainpropercellularsulfurpools.Thisisunderpinned sm bythefactthatnearlyalleukaryotespossesstheuniversalmethioninesalvagepathway . o (MSP),alsoreferredtoasthecanonicalMSPor,inplantsystems,theYangcycle(Fig.1; r g black).Thecanonicalpathwayconsistsofsixenzymaticsteps:nucleosidase/phosphor- / o ylase (MtnP), isomerase (MtnA), dehydratase (MtnB), enolase/phosphatase (MtnC), di- n oxygenase(MtnD),andtransaminase(MtnE)(Fig.1;enzymesDtoFandenzymesIto A p K)(13).ThisresultsintheconversionofMTAtoadenine,formate,andL-methionineat r theexpenseofinorganicphosphate,molecularoxygen,andasuitableaminoacidasan il 1 0 aminedonor.Moreover,thisprocessisinherentlyaerobicduetotheoxygenrequire- , mentofthedioxygenase. 2 0 While some bacteria also possess the canonical MSP, it is becoming increasingly 1 9 evidentthatmanybacteriahavedevelopedmultiplevariationsofthispathway,some b of which result in the production of novel metabolites, including isoprenoids and y g ethylene(14,15).TheBacillusvariationreplacesthebifunctionalenolase/phosphatase u (MtnCconcentration)(Fig.1;enzymeI)withaRuBisCO-likeprotein(RLP),fromtheYkrW e s clade, functioning as a 2,3-diketo-5-methylthiopentyl-1-P enolase (MtnW) (Fig. 1; en- t zyme G), and a separate 2-hydroxy-3-keto-5-methylthiopent(1)ene-1-P phosphatase (MtnX)(Fig.1;enzymeH)(16,17).Similarly,theTetrahymenavariationreplacesMtnB, MtnC,andMtnDwithasinglemultifunctionalfusionenzyme(MtnBD)catalyzingthe dehydratase, enolase, dioxygenase, and, possibly, phosphatase reactions (18). In these cases, the products and oxygen requirements are the same as those of the canonical MSP. Alternatively, some proteobacteria contain genes encoding the MTA-isoprenoid shunt MSP, originally discovered in Rhodospirillum rubrum (Fig. 1; blue) (14), which resultsintheformationof1-deoxyxylulose-5-P(DXP)forisoprenoidmetabolismandof volatilemethanethiol(Fig.1;compound13)forL-methionineregeneration(14).Unlike the canonical MSP, the MTA-isoprenoid shunt is oxygen independent and functions underbothaerobicandanaerobicgrowthconditionsinR.rubrum(14,19).Analogous to the canonical MSP, the first two enzymatic steps of the MTA-isoprenoid shunt are catalyzedbyMTAphosphorylase(MtnP)and5-(methylthio)ribose-1-Pisomerase(MtnA) March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 2 ® R.palustrisMethionineSalvageandMethanethiol D o w n lo a d e d f r o m h t t p : / / m b io . a s m . o r g / o n A p r il 1 0 , 2 0 1 9 b y g u e s t FIG1 Previouslyidentifiedbacterialvariationsonanaerobicandaerobicmethioninesalvagepathways(seereference15).(Black)Strictlyaerobiccanonical (“universal”)MSPfromKlebsiellapneumoniae,alsofoundinmosteukaryotes(plants,animals,fungi).(Red)Bacillussp.variationinwhichtheMTAphosphorylase (MtnP)isreplacedbyanMTAnucleosidase(MtnN)and5-(methylthio)ribosekinase(MtnK)andthebifunctionalDK-MTP-1Penolase/phosphatase(MtnC)is replacedbyaYkrWcladeRLP(MtnW)functioningasaDK-MTP-1Penolaseandaseparatephosphatase(MtnX).(Blue)Aerobic-anaerobicMTA-isoprenoidshunt MSPinR.rubruminwhichaDeepYkrcladeRLP(Rlp1)functionsasa5-(methylthio)xylulose-1-P1,3-isomerasetoform1-(methylthio)xylulose-5-Pasaprecursor tomethanethiolandDXPforisoprenoidbiosynthesis.(Orange)ExclusivelyanaerobicDHAP-ethyleneshuntMSPfromR.rubrumandR.palustrisinwhichanovel classIIaldolase(Ald2)catalyzescleavageof5-(methylthio)ribulose-1-PtoformDHAPand2-(methylthio)acetaldehydeasaprecursortoethylene.Compounds areindicatednumerically;enzymenamesareindicatedalphabetically;genedesignationsareinitalics. (Fig. 1; enzymes D and E). Next, an RLP from the DeepYkr clade catalyzes the 1,3- isomerization of the resultant 5-(methylthio)ribulose-1-P to 1-(methylthio)xylulose-5-P and1-(methylthio)ribulose-5-Pata3:1ratio(Fig.1;enzymeL).Subsequentlyacupin- type 1-(methylthio)xylulose-5-P methylsulfurylase catalyzes the glutathione-mediated March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 3 ® Milleretal. reduction of 1-(methylthio)xylulose-5-P to S-methylthio-glutathione and DXP (Fig. 1; enzymeM)(20,21).Duringtheprocessofglutathioneregeneration,freemethanethiol is proposed to be released either by the (cid:3)-glutamyl cycle, initiated by (cid:3)-glutamyl transferase (21), or by a putative specific methylthio-glutathione reductase (22). The liberated methanethiol couples to O-acetyl-L-homoserine (OAHS) catalyzed by the enzymeOAHSsulfhydrylasetoregenerateL-methionine(Fig.1;enzymeN)(14). FurtherinvestigationsintoMTAmetabolisminR.palustrisandR.rubrumledtothe discoveryofanexclusivelyanaerobicethylene-formingMSP(Fig.1;orange)(15),which weformallynameherethe“DHAP-ethyleneshunt”(for(cid:2)dihydroxyacetonephosphate- methanethiol shunt(cid:2)) Like the canonical and MTA-isoprenoid shunt MSPs, the DHAP- ethyleneshuntMSPproceedsviatheactivityofMtnPandMtnA(Fig.1;enzymesDand E).However,theresultant5-(methylthio)ribulose-1-Pisthencleavedintodihydroxyac- etone phosphate (DHAP) and 2-(methylthio)acetaldehyde by means of a class II D aldolase-likeprotein(Ald2)functioningasa5-(methylthio)ribulose-1Paldolase(Fig.1; o w enzyme O). The 2-(methylthio)acetaldehyde is subsequently reduced by a putative n alcohol dehydrogenase to 2-(methylthio)ethanol (Fig. 1; enzyme P), which is further lo a metabolized by an unknown enzyme(s) to recycle the methylthio moiety, generating d e ethyleneintheprocess. d Lastly, in R. rubrum, bona fide RuBisCO is also absolutely required to support f r o anaerobicMTAmetabolism.ComplementationstudiesperformedwithmutantRuBisCO m proteins indicate that RuBisCO may function differently from the typical ribulose-1,5- h bisphosphate-dependent CO2 fixation reaction and is required for MTA metabolism. ttp ComplementationstudiesshowalsothatallextantformsofRuBisCO(formsI,II,andIII) : / / can perform this unknown function, and metabolomics studies suggest that the m b unknownfunctionmaybelinkedtotheformationofS-methyl-3-mercaptopyruvateand io S-methyl-L-cysteine(23). .a R.palustrisisuniqueinthatitpossesseshomologuesfortwoRLPs(encodedbythe s m rlp1andrlp2genes)andtwoRuBisCOs,(formI,encodedbycbbLS,andformII,encoded . o bycbbM)(24).RLP1ofR.palustrisishomologoustotheDeepYkrRLPfromtheR.rubrum r g MTA-isoprenoidshunt(Fig.1;enzymeL),andRLP2ishomologoustotheChlorobacu- / o lumtepidumPhotoRLP,whichinC.tepidumisinvolvedinastressresponseandsulfur n oxidation(25).Moreover,R.palustriscontainsalltherequisitegenehomologuesforthe A p MTA-isoprenoidshunt(Fig.1;blue)(19)andalsopossessesafunctionalDHAP-ethylene r shuntMSP(Fig.1;orange)(15).Assuch,R.palustrisispoisedformetabolicversatilityin il 1 0 its ability to metabolize MTA in order to maintain proper intracellular sulfur pools. , However, the aerobic mechanisms of methionine salvage in this organism and, by 2 0 extension,thefunctionofthetwodistinctRLPsandRuBisCOsinsulfurmetabolismare 1 9 largelyunknown. b Inthisstudy,weshowed,throughacombinationofgenedeletionsanddirected y g metabolite detection studies, that under aerobic conditions, R. palustris contains u both a functional MTA-isoprenoid shunt and an additional aerobic MSP, which we e s namethe“DHAP-methanethiolshuntMSP.”Analogoustotheexclusivelyanaerobic t DHAP-ethylene shunt from R. rubrum and R. palustris (Fig. 1; orange) (15), the R.palustrisaerobicDHAP-methanethiolshuntinitiallyproceedsbyconvertingMTA to 2-(methylthio)ethanol and DHAP via MtnP, MtnA, Ald2, and a putative alcohol dehydrogenase(Fig.1;enzymesD,E,O,andP).However,thisnovelR.palustrisaerobic DHAP-methanethiol shunt MSP then employs an unknown enzyme(s) for methionine regeneration, resulting in metabolism of 2-(methylthio)ethanol into volatile methane- thiol. This is in contrast to the results seen with the exclusively anaerobic DHAP- ethylene shunt MSP, which instead further metabolizes 2-(methylthio)ethanol via an unknown enzyme(s) into ethylene and an unknown organo-sulfur intermediate for methionine regeneration. Presumably, as with the R. rubrum MTA-isoprenoid shunt (Fig. 1; enzyme N) (14), the homologous R. palustris OAHS sulfhydrylase (Met17) regenerates methionine from the liberated methanethiol and O-acetyl-L-homoserine. Feedingexperimentsperformedwith14C-labeledMTAindicatedthatthetwopathways functionsimultaneously,suggestingapartitioningofMTAbetweenDXPandDHAP March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 4 ® R.palustrisMethionineSalvageandMethanethiol TABLE1 R.palustrisstrainsusedinthisstudy Aerobicgrowth doublingtime(h)b R.palustris Growthphenotype strain ordescriptiona Reference SO (cid:2)2 MTA 4 Wildtype CGA010,Str 43 22(cid:3)3 20(cid:3)3 Δrlp1 Rlp1;DeepYkrcladeRLP(ΔRPA2169) 15 25(cid:3)3 27(cid:3)3 Δrlp2 Rlp2—;PhotocladeRLP(ΔRPA0262) 15 27(cid:3)1 26(cid:3)1 Δrlp12 Δrlp1Δrlp2 Thisstudy 27(cid:3)2 28(cid:3)3 Δcupin Cupin—;MTXu-5Pmethylsulfurylase(ΔRPA2170) 15 22(cid:3)3 27(cid:3)5 Δquad Δrlp1Δrlp2RbcL—(ΔRPA1559)CbbM—(ΔRPA4041) Thisstudy 19(cid:3)2 19(cid:3)3 ΔquadΔcupin Δrlp1Δrlp2ΔrbcLΔcbbMΔcupin Thisstudy 20(cid:3)3 22(cid:3)2 ΔmtnP MtnP—;MTAphosphorylase(ΔRPA4821) 15 19(cid:3)2 NG ΔmtnP::pBBR1 ΔmtnPcomplementedwithpBBR1 15 19(cid:3)2 NG ΔmtnP::pBBR1-RpMtnP ΔmtnPcomplementedwithpBBR1bearingmtnP 15 20(cid:3)3 20(cid:3)2 ΔmtnA ΔMTR-1Pisomerase(RPA4820) 15 21(cid:3)2 NG D ΔmtnA::pBBR1 ΔmtnAcomplementedwithpBBR1 15 25(cid:3)1 NG o ΔmtnA::pBBR1-RpMtnA ΔmtnAcomplementedwithpBBR1bearingmtnA 15 23(cid:3)2 18(cid:3)2 w ΔΔarllpd12Δald2 AΔlrdlp21—Δ;aMldT2Ru-1Paldolase(ΔRPA4655) T1h5isstudy 2109(cid:3)(cid:3)63 6201(cid:3)(cid:3)32 nloa Δrlp1Δald2::pBBR1 Δrlp1Δald2complementedwithpBBR1 Thisstudy 19(cid:3)1 70(cid:3)5 d Δrlp1Δald2::pBBR1-RpAld2 Δrlp1Δald2complementedwithpBBR1bearingald2 Thisstudy 21(cid:3)3 17(cid:3)3 e d Δrlp2Δald2 Δrlp2Δald2 Thisstudy 19(cid:3)4 17(cid:3)4 f Δrlp12Δald2 Δrlp1Δrlp2Δald2 Thisstudy 21(cid:3)3 57(cid:3)4 ro Δrlp12Δald2::pBBR1 Δrlp12Δald2complementedwithpBBR1 Thisstudy 17(cid:3)1 65(cid:3)2 m Δrlp12Δald2::pBBR1-RpAld2 Δrlp12Δald2complementedwithpBBR1bearingald2 Thisstudy 21(cid:3)1 18(cid:3)3 h t aR.palustrisstrainCGA009genelocusidentification(ID)numbersfromNCBIgiveninparentheses.Str,streptomycinresistance. tp bDoublingtimeswerecalculatedbyleast-squaresfitofthegrowthdata(duringtheperiodinwhichthegrowthwasintheexponentialphase;seeFig.S1toS6)to : / themodelln(growth)(cid:4)kt(cid:5)bsuchthatdoublingtime(cid:4)ln(2)/k.Errorbarsrepresentstandarderrorsofthefitdata.NG,nogrowthobserved. /m b io . formetabolicversatility.Furthermore,wedemonstrateinvivoandinvitrothatthe a s R. palustris DeepYkr RLP enzyme (RLP1) catalyzes the 5-(methylthio)ribulose-1-P m 1,3-isomerizationreactionoftheMTA-isoprenoidshunttoform1-(methylthio)xylulose- .o r 5-P and 1-(methylthio)ribulose-5-P, whereas the Photo RLP enzyme (RLP2) does not. g / Finally, under aerobic conditions, both the MTA-isoprenoid shunt and DHAP- o n methanethiolshuntMSPsappeartobeconstitutivelyfunctionalirrespectiveofthetotal A availablesulfurconcentrationtoserveageneralhousekeepingfunctioninconverting p MTA to methanethiol. Under anaerobic conditions, the DHAP-methanethiol shunt is ril inactive. These findings suggest a possible mechanism by which methanethiol, a key 1 0 componentoftheglobalsulfurcycle,isbiologicallyproducedbybacteria. , 2 0 RESULTS 1 9 R. palustris contains multiple aerobic methionine salvage pathways linked to b methanethiol production. R. palustris strain CGA010 is able to grow aerobically on y g MTAasasolesulfursource,indicatingthatithasafunctionalaerobicMSPforsalvaging u sulfurfromMTA(Table1)(Fig.S1).However,basedonsequencehomology,R.palustris e s doesnotpossessanyknownhomologousenzymesoftheuniversalMSP(Fig.1;black) t save for MTA phosphorylase (mtnP, RPA4821), 5-(methylthio)ribose-1-P isomerase (mtnA, RPA4820), and a putative dioxygenase (mtnD, RPA2352). Rather, R. palustris encodes the following putative homologues to the R. rubrum MTA-isoprenoid shunt genes (Fig. 1; blue) (14, 15): 5-(methylthio)ribulose-1-P 1,3-isomerase (rlp1; RPA2169), 1-(methylthio)xylulose-5-Pmethylsulfurylase(cupin;RPA2170),andOAHSsulfhydrylase (met17; RPA2362 and RPA4251). In R. rubrum, aerobic and anaerobic metabolism of MTA leads to the formation of volatile methanethiol by virtue of the MTA-isoprenoid shunt MSP (Fig. 1; blue) (14, 23). Catalyzed by OAHS sulfhydrylase, methanethiol is coupledtoO-acetyl-L-homoserinetoregenerateL-methionine(Fig.1;enzymeN);ifnot utilized,methanethiolisreleasedintotheextracellularenvironment(14).Todetermine if a similar MTA-isoprenoid shunt MSP occurred in R. palustris, cells were grown aerobicallyonMTAasthesolesulfursource,washedwithsulfur-freemedia,andthen fed[methyl-14C]MTA.FreethiolsgenerateduponfeedingwerecapturedwithEllman’s reagent [5,5=-dithiobis-(2-nitrobenzoic acid) (DTNB)] and resolved by reverse-phase March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 5 ® Milleretal. D o w n lo a d e d f r o m h t t p : / / m b io . a s m . o r g / o n A p r il 1 0 , 2 0 1 FIG2 Identificationof2-(methylthio)ethanolandvolatilemethanethiolproducedfrom[methyl-14C]MTA. 9 (A)Methanethioland(B)2-(methylthio)ethanolwereidentifiedinvariousR.palustrisstainsfedaerobically b with[methyl-14C]MTAfortheindicatedamountsoftime(h)inthepresenceofDTNBtocapturefreethiols y releasedfromthecells.Metaboliteswereseparatedbyreverse-phaseHPLCwithanin-lineradiometric g detector.MethanethiolasaDTNBadductwastheonlyfree-thiolspeciesobserved.MT-DTNB,unlabeled u methanethiol standard as a DTNB adduct detected by 320-nm-wavelength absorbance; [14C]MTA, e s [methyl-14C]MTAstandard.AnR.rubrumRLPdeletionstrain(R.rub.Δrlp1)wasfedanaerobicallyasa t control for 2-(methylthio)ethanol identification since this strain was previously reported to produce 2-(methylthio)ethanolfromMTA(15).MT-EtOH,unlabeled2-(methylthio)ethanolstandarddetectedby 215-nm-wavelengthabsorbance. high-performanceliquidchromatography(HPLC)withanin-lineradiometricdetector. AswithR.rubrum(23),[methyl-14C]methanethiolwasobservedinR.palustrisasaDTNB adduct(Fig.2A),suggestingafunctionalMTA-isoprenoidshuntinR.palustris. DistinguishingenzymesoftheMTA-isoprenoidshuntinR.rubrumaretheDeepYkr RLPandcupin-typemethylsulfurylase(Fig.1;enzymesLandM)(14).Sequencehomol- ogy and gene organization suggested that the R. palustris DeepYkr RLP (RLP1) (53% identity; E value 9e(cid:6)121) and cupin (56% identity; E value 3e(cid:6)50) homologues may function like their R. rubrum counterparts. Additionally, previous in vitro work on functionaldiversityintheRLPenzymefamilyindicatedthattheR.palustrisPhotoRLP (RLP2)mayalsocatalyzeanisomerizationreactionsimilartothatseenwiththebona March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 6 ® R.palustrisMethionineSalvageandMethanethiol fide R. rubrum DeepYkr RLP (22). Therefore, we initially inactivated the DeepYkr RLP (Δrlp1)andPhotoRLP(Δrlp2)genesinR.palustris.Mutantstrainslackingafunctional rlp1geneorrlp2geneorbothshowedgrowthsimilartothatshownbythewildtype underaerobicconditionsusingMTAasthesolesulfursource(Table1)(Fig.S1). Todetermineifmethanethiolwasstillbeingproducedintheabsenceofafunctional RLP in R. palustris, cells were grown aerobically on MTA as the sole sulfur source, washedwithsulfur-freemedia,andthenfedwithMTA.Methanethiolreleasedbythe celluponfeedingwithMTAwascapturedwithDTNBandmeasuredbyreverse-phase chromatography. In the absence of a functional RLP1 (Δrlp1 strain or Δrlp12 strain), methanethiol was still produced, but at levels that were 4-to-5-fold lower than the wild-type level (Fig. 3A). The level of methanethiol liberated by the R. palustris Δrlp2 strainwassimilartothewild-typelevel.ThisindicatedthattheR.palustrisDeepYkrRLP (RLP1)andnotthePhotoRLP(RLP2)waslikelyinvolvedintheputativeMTA-isoprenoid D shunt.TofurtherdeterminethefunctionalityoftheputativeMTA-isoprenoidshunt,the o w homologous cupin gene was inactivated in the R. palustris wild-type strain (Δcupin). n Again,growthonMTAasthesolesulfursourcewasunaffected(Table1)(Fig.S1),but lo a thesame4-to-5-folddecreaseinthemethanethiollevelwasobserved(Fig.3A).These d e resultsindicatedthatR.palustrispossessesaputativeMTA-isoprenoidshuntinwhich d the DeepYkr RLP and cupin participate. Moreover, since aerobic growth on MTA f r o occurredintheabsenceofRLPorcupinandsincemethanethiolwasstillproduced,a m separateaerobicMSPmustbefunctionalinR.palustristhatisalsolinkedtomethane- h thiolproduction.Therefore,wesoughttoverifytheMTA-isoprenoidshuntaswellasto tt p characterizethisputativeadditionalaerobicMSPinR.palustris. : / / NeitheroftheRuBisCOsofR.palustriscontributestoaerobicMTAmetabolism. m b PreviousstudiesofR.rubrumrevealedthatabonafideRuBisCOisabsolutelyrequired io to support anaerobic growth on MTA as the sole sulfur source (26). This requirement . a does not appear to be true simply for cycling the RuBisCO substrate, ribulose-1,5- s m bisphoshate, because certain mutant RuBisCO enzymes severely compromised in car- . o bon fixation activity are still able to support MTA-dependent growth (23). Rather, it r g appears that RuBisCO functions specifically in MTA metabolism in R. rubrum via an / o unknownmechanism(26).RecentstudieshavedemonstratedthatinbothR.palustris n andR.rubrum,RuBisCOnotonlyissynthesizedanaerobicallybutalsomaybesynthe- A p sized under aerobic or microaerophilic conditions (27, 28). Indeed, under aerobic r growth conditions, deletion of RuBisCO in R. rubrum (strain I19* [23]) resulted in a il 1 delayedgrowthphenotypeaerobically(Fig.S2)whenMTAwasusedasthesolesulfur 0 , sourcecomparedtosulfate,suggestingapossibleroleinaerobicMTAmetabolismas 2 0 well. Therefore, we considered the possibility that one or both of the R. palustris 1 9 RuBisCOs might be functioning in aerobic MTA metabolism. Both the form I RuBisCO b gene(cbbLS)andtheformIIRuBisCOgene(cbbM),inconjunctionwiththecupingene, y g were deleted in the Δrlp12 background to form strain Δquad Δcupin. Inactivation of u the RuBisCOs had no effect on either aerobic or anaerobic growth using MTA versus e s sulfate as the sole sulfur source (Table 1) (Fig. S2 and S3). The levels of methanethiol t production by R. palustris showed negligible differences between the Δquad Δcupin andΔrlp12strains[t(cid:4)3.23;Pvalue(cid:4)0.05;confidenceinterval(CI)(cid:4)0.05](Fig.3A), further indicating that RuBisCO was not involved in methanethiol metabolism from MTA.Together,theseresultssupporttheconclusionthatneitherofthetwoRuBisCOs functionsinMTAmetabolisminR.palustris. MtnP,MtnA,andAld2functionintheadditionalR.palustrisaerobicMSP.Our previous studies of R. rubrum and R. palustris anaerobic MTA metabolism established thestrictlyanaerobicDHAP-ethyleneshuntMSP(15).Here,MTAphosphorylase(MtnP), 5-(methylthio)ribose-1-P isomerase (MtnA), a class II aldolase-like protein (Ald2) func- tioningasa5-(methylthio)ribulose-1Paldolase,andaputativealcoholdehydrogenase (Fig.1;enzymesDandEandenzymesOandP)sequentiallyenabledthemetabolism of MTA to 2-(methylthio)ethanol and DHAP. Subsequently, but only under anaerobic growthconditions,the2-(methylthio)ethanolwasfurthermetabolizedtoethyleneand anunknownorgano-sulfurintermediateforsulfursalvage(15).Interestingly,R.palustris March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 7 ® Milleretal. D o w n lo a d e d f r o m h t t p : / / m b io . a s m . o r g / o n A p r il 1 0 , 2 0 1 9 b y g u FIG3 QuantificationofvolatilemethanethiolreleasedbyR.palustris.(A)Culturesofeachindicatedstrain e wereinitiallygrownaerobicallyinthepresenceofMTA,washedinsulfur-freemediacontainingDTNB, s andthenfedMTAfor12h.(BandC)Cultureswereinitiallygrownaerobicallyinthepresenceofsulfate, t washedinsulfur-freemediacontainingDTNBandthenfedfor12hwithMTA.TheΔmtnPandΔmtnA deletionstrains(B)andtheΔrlp12,Δrlp1,Δrlp2,andΔald2deletionstrains(C)werecomplementedwith pBBR1-RpMtnP((cid:5)RpMtnP;MTAphosphorylase),pBBR1-RpMtnA[(cid:5)RpMtnA;5-(methylthio)ribose-1-P isomerase], and pBBR1-RpAld2 [(cid:5) RpAld2; 5-(methylthio)ribulose-1-P aldolase]. Volatile methanethiol releasedbythecellswascapturedasaDTNBadductandquantifiedbyreverse-phaseHPLCbasedona standardcalibrationcurve.Datacorrespondingtothetotalmethanethiolreleasedbythecellsduring feedingaregiveninmicromolesdetectedperliterofculturepercultureopticaldensitymeasuredat 660nm((cid:2)mol/liter/OD ).Errorbarsindicatestandarddeviationsofresultsfromn(cid:4)3independent 660 feedingexperiments. couldalsogrowaerobicallyon2-(methylthio)ethanolasasolesulfursource,suggesting thatMtnP,MtnA,andAld2mayfunctioninthisorganisminanaerobicMSPinvolving 2-(methylthio)ethanol that is different from the exclusively anaerobic DHAP-ethylene shunt MSP. Therefore, we systematically quantified the growth of and methanethiol production from R. palustris MTA phosphorylase (ΔmtnP), 5-(methylthio)ribose-1P isomerase(ΔmtnA),andaldolase(Δald2)genedeletionstrains(Table1). March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 8 ® R.palustrisMethionineSalvageandMethanethiol As observed with R. rubrum (14), inactivation of MtnP and MtnA resulted in com- promisedaerobicgrowthonMTAasthesolesulfursource(Table1)(Fig.S4).Further- more, MTA feeding experiments performed with (cid:7)mtnP and (cid:7)mtnA deletion strains initially grown on sulfate showed no methanethiol production, in contrast to the wild-typeresults(Fig.3B).UponcomplementingtheΔmtnPandΔmtnAdeletionstrains with their respective genes expressed in trans from a plasmid, both growth (Table 1) (Fig.S4)andmethanethiolproduction(Fig.3B)wererestoredtowild-typelevels.This demonstratedthatMTAphosphorylase(MtnP)and5-(methylthio)ribose-1-Pisomerase (MtnA) are the first two requisite enzymes for both aerobic MSPs, the putative MTA- isoprenoidshuntandtheadditionalpathway,inR.palustris. Next,theputative2-(methylthio)ribulose-1-Paldolase(ald2)genewasinactivatedin boththewild-typestrainandtheΔrlp12deletionstraintoconstructstrainsΔald2and Δrlp12 Δald2, respectively (Table 1). While the aldolase deletion in the wild-type D background ((cid:7)ald2) was still capable of aerobic growth on MTA as the sole sulfur o w source, the Δrlp12 Δald2 strain exhibited very poor growth (Table 1 )F(ig. 4A and S5). n Moreover,whilethe(cid:7)ald2deletionstraincouldstillproducemethanethiolat~75%of lo a thewild-typelevel,negligiblemethanethiolwasobservedintheΔrlp12Δald2deletion d e strain(Fig.3C).ComplementationoftheΔrlp12Δald2strainwiththealdolaseexpressed d in trans not only restored growth (Table 1) (Fig. S4A and S5) but also restored f r o methanethiol production to nearly wild-type levels (Fig. 3C). These results confirmed m thatR.palustrishastwoprimaryMSPs,aputativeMTA-isoprenoidshuntandasecond h aerobic MSP utilizing Ald2. Again, it was apparent that both pathways required MTA tt p phosphorylase (MtnP) and 5-(methylthio)ribose-1-P isomerase (MtnA) for the initial : / / metabolism of MTA, and both pathways resulted in the generation of volatile meth- m b anethiol. io Ald2 links MTA metabolism to 2-(methylthio)ethanol as part of an aerobic . a methanethiol-producingMSP.Wenextsoughttoidentifytheinvivoproduct(s)of s m the Ald2-catalyzed reaction of the additional methanethiol-producing MSP. Under . o anaerobic conditions, in both R. palustris and R. rubrum, Ald2 functions as a r g 5-(methylthio)ribulose-1-P aldolase to form DHAP and 2-(methylthio)acetaldehyde as / o partoftheDHAP-ethyleneshuntMSP(14,15).Todetermineifasimilarsequencewas n occurringaerobicallyinvivo,thewild-type,ΔquadΔcupin,andΔald2strainswerefed A p with[methyl-14C]MTA.Metaboliteswereextractedandresolvedbyreverse-phaseHPLC r withanin-lineradiometricdetector.AsobservedforanaerobicMTAmetabolism(15), il 1 0 2-(methylthio)ethanol was produced in the wild-type strain and was undetectable in , thealdolasedeletionstrain(Fig.2B).Inaddition,2-(methylthio)ethanolwasenhanced 2 0 in the Δquad Δcupin strain in which the MTA-isoprenoid shunt was inactivated via 1 9 knockouts of RLP1 and cupin (vide infra). As previously reported (15), observance of b 2-(methylthio)ethanolandnot2-(methylthio)acetaldehydeinvivoislikelyduetorapid y g conversion of the aldehyde to the less reactive alcohol moiety, presumably by an u alcoholdehydrogenase.Assuch,theseresultsindicatethatAld2alsofunctionsinvivo e s asa5-(methylthio)ribulose-1-PaldolasetoformDHAPand2-(methylthio)acetaldehyde t underaerobicgrowthconditionsinR.palustris. MethanethiolcapturedbyDTNBafterfeedingtheΔquadΔcupinstrainwith[methyl- 14C]MTA was observed as [methyl-14C]methanethiol (Fig. 2A), confirming that the methanethiolproducedbythesecondMSPinwhichAld2participateswasalsoderived from MTA, presumably via 2-(methylthio)ethanol as an intermediate. This was further supported by the observation that R. palustris strains fed aerobically with 2-(methylthio) ethanolproducedmethanethiolataratesimilartothatseenwhentheywerefedwith MTA (Table 2). These observations are consistent with the conclusion that R. palustris possesses an aerobic DHAP-methanethiol shunt MSP analogous to the anaerobic DHAP-ethyleneshuntMSP.There,DHAPand2-(methylthio)acetaldehydeareproduced from MTA by the sequential action of MtnP, MtnA, and Ald2 (14, 15). It is likely an alcohol dehydrogenase catalyzes reduction of 2-(methylthio)acetaldehyde to the ob- served 2-(methylthio)ethanol, which is further metabolized via some unknown en- zyme(s)toproducemethanethiolforsulfursalvage(Fig.6;green). March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 9 ® Milleretal. D o w n lo a d e d f r o m h t t p : / / m b io . a s m . o r g / o n A p r il 1 0 , 2 0 1 9 b y FIG4 AerobicgrowthofR.palustrisstrainsbytheuseof500(cid:2)MMTAasthesolesulfursource.Culture g u opticaldensitywasmeasuredata660-nmwavelength(OD ).Errorbarsindicatestandarddeviations e 660 ofresultsfromn(cid:4)3independentgrowthexperiments.PanelsAandBrepresentthesameexperiment, s t butseparatedintotwopanelsforeaseofreading/viewing. The[methyl-14C]MTAfeedingexperimentsusingthewild-typestrainversusstrains inwhichtheMTA-isoprenoidshunt(strain(cid:7)quadΔcupin)orDHAP-methanethiolshunt (strain(cid:7)ald2)wasinactivatedenabledmeasurementofanapproximatemassbalance intheconversionofMTAtomethanethiolforeachpathway.Uponfeedingeachstrain, therewasalineardecreaseinthelevelof[methyl-14C]MTAduetoconsumptionbythe cellsandaconcomitantlinearincreaseinthelevelofvolatile[methyl-14C]methanethiol released,whichwascapturedanddetectedasaDNTBadduct.Giventhatafractionof the methanethiol formed would have been oxidized or reincorporated into the cell, presumably as methionine and subsequent metabolites, before it could have been captured,theratiooftherateofmethanethiolcapturedtotherateofMTAconsumed givesalowerlimitonthemassbalance.Forthewild-typestrain,62%(cid:3)10%oftheMTA consumedwascapturedasmethanethiolonamolarbasis.Thepathwaysappearedto March/April2018 Volume9 Issue2 e00407-18 mbio.asm.org 10
Description: