ebook img

Twelve Landmarks of Twentieth-Century Analysis PDF

525 Pages·2015·3.545 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Twelve Landmarks of Twentieth-Century Analysis

TwelveLandmarksofTwentieth-CenturyAnalysis The striking theorems showcased in this book are among the most profound results of twentieth-century analysis. The authors’ original approach combines rigorous mathematicalproofswithcommentaryontheunderlyingideastoprovidearichinsight intotheselandmarksinmathematics.ResultsrangingfromtheproofofLittlewood’s conjecture to the Banach–Tarski paradox have been selected for their mathematical beautyaswellastheireducativevalueandhistoricalrole.Placingeachtheoreminhis- toricalperspective,theauthorspaintacoherentpictureofmodernanalysisanditsdevel- opment,whilstmaintainingmathematicalrigourwiththeprovisionofcompleteproofs, alternativeproofs,workedexamples,andmorethan150exercisesandsolutionhints. This edition extends the original French edition of 2009 with a new chapter on partitions,includingtheHardy–Ramanujantheorem,andasignificantexpansionofthe existingchapteronthecoronaproblem. Twelve Landmarks of Twentieth-Century Analysis D. CHOIMET LycéeduParc,Lyon H. QUEFFÉLEC UniversitédeLille Illustratedby MICHAËLMONERAU TranslatedfromtheFrenchby DANIÈLEGIBBONSandGREGGIBBONS UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107059450 OriginallypublishedinFrenchasAnalysemathématique.Grandsthéorèmesduvingtième sièclebyCalvageetMounet,2009 (cid:2)c Calvage&Mounet,Paris,2009 FirstpublishedinEnglishbyCambridgeUniversityPress2015 Englishtranslation(cid:2)c CambridgeUniversityPress2015 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2015 PrintedintheUnitedKingdombyClays,StIvesplc AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Choimet,Denis. [Analysemathématique.English] Twelvelandmarksoftwentieth-centuryanalysis/D.Choimet,LycéeduParc,Lyon,H. Queffélec,UniversitédeLille; illustratedbyMichaëlMonerau; translatedfromtheFrenchbyDanièleGibbonsandGregGibbons. pages cm OriginallypublishedinFrenchas:Analysemathématique.Grandsthéorèmesduvingtième siècle(Montrouge(Hauts-de-Seine):CalvageetMounet,2009). ISBN978-1-107-05945-0 1. Mathematicalanalysis. 2. Harmonicanalysis. 3. Banachalgebras. I. Queffélec,Hervé. II. Title. QA300.C45413 2015 515–dc23 2014050264 ISBN978-1-107-05945-0Hardback ISBN978-1-107-65034-3Paperback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. toourstudents Contents Foreword pagexi Preface xiii 1 TheLittlewoodTauberiantheorem 1 1.1 Introduction 1 1.2 Stateoftheartin1911 7 1.3 AnalysisofLittlewood’s1911article 10 1.4 Appendix:Powerseries 27 Exercises 31 2 TheWienerTauberiantheorem 39 2.1 Introduction 39 2.2 AbriefoverviewofFouriertransforms 41 2.3 Wiener’soriginalproof 44 2.4 ApplicationtoLittlewood’stheorem 57 2.5 Newman’sproofoftheWienerlemma 61 2.6 ProofofWiener’stheoremusingGelfandtheory 63 Exercises 66 3 TheNewmanTauberiantheorem 73 3.1 Introduction 73 3.2 Newman’slemma 74 3.3 TheNewmanTauberiantheorem 79 3.4 Applications 83 3.5 ThetheoremsofIkeharaandDelange 93 Exercises 99 4 Genericpropertiesofderivativefunctions 103 4.1 Measureandcategory 103 4.2 FunctionsofBaireclassone 105 vii viii Contents 4.3 Thesetofpointsofdiscontinuityofderivativefunctions 107 4.4 Differentiablefunctionsthatarenowheremonotonic 112 Exercises 116 5 Probabilitytheoryandexistencetheorems 120 5.1 Introduction 120 5.2 Khintchine’sinequalitiesandapplications 121 5.3 HilbertiansubspacesofL1([0,1]) 132 5.4 Concentration of binomial distributions andapplications 134 Exercises 143 6 TheHausdorff–Banach–Tarskiparadoxes 148 6.1 Introduction 148 6.2 Means 151 6.3 Paradoxes 162 6.4 Superamenability 173 6.5 Appendix:Topologicalvectorspaces 176 Exercises 177 7 Riemann’s“other”function 182 7.1 Introduction 182 7.2 Non-differentiabilityoftheRiemannfunctionat0 184 7.3 Itatsu’smethod 185 7.4 Non-differentiabilityattheirrationalpoints 191 Exercises 212 8 Partitionumerorum 219 8.1 Introduction 219 8.2 Thegeneratingfunction 226 8.3 TheDedekindηfunction 227 8.4 Anequivalentof p(n) 241 8.5 Thecirclemethod 248 8.6 Asymptotic developments and numerical calculations 259 8.7 Appendix:Calculationofanintegral 261 Exercises 263 9 Theapproximatefunctionalequationofthefunctionθ 267 0 9.1 Theapproximatefunctionalequation 268 9.2 Otherformsoftheapproximatefunctionalequationand applications 275 Exercises 286 Contents ix 10 TheLittlewoodconjecture 292 10.1 Introduction 292 10.2 Propertiesofthe L1-normandtheLittlewoodconjecture 298 10.3 SolutionoftheLittlewoodconjecture 303 10.4 Extensiontothecaseofrealfrequencies 312 Exercises 325 11 Banachalgebras 329 11.1 SpectrumofanelementinaBanachalgebra 330 11.2 CharactersofaBanachalgebra 333 11.3 Examples 338 ∗ 11.4 C -algebras 342 Exercises 346 12 TheCarlesoncoronatheorem 353 12.1 Introduction 353 12.2 Prerequisites 354 12.3 Beurling’stheorem 363 12.4 TheLagrange–Carlesonproblemforaninfinitesequence 367 12.5 Applicationstofunctionalanalysis 382 12.6 Solutionofthecoronaproblem 391 12.7 Carleson’sinitialproofandCarlesonmeasures 412 12.8 Extensionsofthecoronatheorem 417 Exercises 420 13 TheproblemofcomplementationinBanachspaces 429 13.1 Introduction 429 13.2 Theproblemofcomplementation 431 13.3 Solutionofproblem(9) 436 13.4 TheKadecˇ–Snobartheorem 438 13.5 Anexample“àlaLiouville” 443 13.6 Anexample“àlaHermite” 445 13.7 Morerecentdevelopments 449 Exercises 452 14 Hintsforsolutions 460 ExercisesforChapter1 460 ExercisesforChapter2 461 ExercisesforChapter3 464 ExercisesforChapter4 465 ExercisesforChapter5 468 ExercisesforChapter6 469 ExercisesforChapter7 472

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.