ebook img

Turbo Message Passing Algorithms for Structured Signal Recovery PDF

113 Pages·2020·3.089 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Turbo Message Passing Algorithms for Structured Signal Recovery

SPRINGER BRIEFS IN COMPUTER SCIENCE Xiaojun Yuan Zhipeng Xue Turbo Message Passing Algorithms for Structured Signal Recovery 123 SpringerBriefs in Computer Science SeriesEditors StanZdonik,BrownUniversity,Providence,RI,USA ShashiShekhar,UniversityofMinnesota,Minneapolis,MN,USA XindongWu,UniversityofVermont,Burlington,VT,USA LakhmiC.Jain,UniversityofSouthAustralia,Adelaide,SA,Australia DavidPadua,UniversityofIllinoisUrbana-Champaign,Urbana,IL,USA XueminShermanShen,UniversityofWaterloo,Waterloo,ON,Canada BorkoFurht,FloridaAtlanticUniversity,BocaRaton,FL,USA V.S.Subrahmanian,UniversityofMaryland,CollegePark,MD,USA MartialHebert,CarnegieMellonUniversity,Pittsburgh,PA,USA KatsushiIkeuchi,Meguro-ku,UniversityofTokyo,Tokyo,Japan BrunoSiciliano,UniversitàdiNapoliFedericoII,Napoli,Italy SushilJajodia,GeorgeMasonUniversity,Fairfax,VA,USA NewtonLee,InstituteforEducation,ResearchandScholarships,LosAngeles, CA,USA SpringerBriefs present concise summaries of cutting-edge research and practical applicationsacrossawidespectrumoffields.Featuringcompactvolumesof50to 125pages,theseriescoversarangeofcontentfromprofessionaltoacademic. Typicaltopicsmightinclude: (cid:129) Atimelyreportofstate-of-theartanalyticaltechniques (cid:129) A bridge between new research results, as published in journal articles, and a contextualliteraturereview (cid:129) Asnapshotofahotoremergingtopic (cid:129) Anin-depthcasestudyorclinicalexample (cid:129) Apresentationofcoreconceptsthatstudentsmustunderstandinordertomake independentcontributions Briefsallowauthorstopresenttheirideasandreaderstoabsorbthemwithminimal time investment. Briefs will be published as part of Springer’s eBook collection, withmillionsofusersworldwide.Inaddition,Briefswillbeavailableforindividual print and electronic purchase. Briefs are characterized by fast, global electronic dissemination, standard publishing contracts, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for pub- lication 8–12 weeks after acceptance. Both solicited and unsolicited manuscripts areconsideredforpublicationinthisseries. **Indexing:ThisseriesisindexedinScopusandzbMATH** Moreinformationaboutthisseriesathttp://www.springer.com/series/10028 Xiaojun Yuan (cid:129) Zhipeng Xue Turbo Message Passing Algorithms for Structured Signal Recovery XiaojunYuan ZhipengXue CenterforIntelligentNetworking& SchoolofInformationScienceand Communication Technology UniversityofElectronicScience& ShanghaiTechUniversity TechnologyofChina Shanghai,China Chengdu,China ISSN2191-5768 ISSN2191-5776 (electronic) SpringerBriefsinComputerScience ISBN978-3-030-54761-5 ISBN978-3-030-54762-2 (eBook) https://doi.org/10.1007/978-3-030-54762-2 ©TheAuthor(s),underexclusivelicensetoSpringerNatureSwitzerlandAG2020 Thisworkissubjecttocopyright.AllrightsaresolelyandexclusivelylicensedbythePublisher,whether thewholeorpartofthematerialisconcerned,specificallytherightsoftranslation,reprinting,reuse ofillustrations,recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,and transmissionorinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Messagepassingisanefficientiterativealgorithmforsolvinginference,optimiza- tion, and satisfaction problems. It has found successful applications in numerous areas, including channel coding (e.g., low-density parity check (LDPC) codes and turbocodes),computervision(e.g.,stereoimages),andfreeenergyapproximation. Recently,novelmessagepassingalgorithms,suchasapproximatemessagepassing (AMP)andturbocompressedsensing(Turbo-CS),havebeendevelopedforsparse signal reconstruction. While the AMP algorithm exhibits guaranteed performance for sensing matrices with independent and identically distributed (i.i.d.) elements, Turbo-CS achieves a much better performance when the sensing matrix is con- structedbasedonfastorthogonaltransforms(suchasthediscreteFouriertransform and the discrete cosine transform). Inspired by the success of Turbo-CS, a series ofmessagepassingalgorithmshavebeendevelopedforsolvingvariousstructured signalrecoveryproblemswithcompressedmeasurements.Wecallthesealgorithms turbomessagepassingalgorithms.Inthisbook,wewillundertakeacomprehensive study on turbo message passing algorithms for structured signal recovery, where the structured signals include: (1) a sparse vector/matrix (which corresponds to the compressed sensing (CS) problem), (2) a low-rank matrix (which corresponds to the affine rank minimization (ARM) problem), and (3) a mixture of a sparse matrixandalow-rankmatrix(whichcorrespondstotherobustprincipalcomponent analysis (RPCA) problem). In particular, the book is divided into the following parts: First, for the CS problem, we introduce a turbo message passing algorithm termed denoising-based Turbo-CS (D-Turbo-CS). We show that with D-Turbo- CS, signals without the knowledge of the prior distributions, such as images, can be recovered from compressed measurements by using message passing with a verylowmeasurementrate.Second,weintroduceaturbomessagepassing(TMP) algorithm for solving the ARM problem. We further discuss the impact of the use ofvariouslinearoperatorsontherecoveryperformance,suchasright-orthogonally invariantlinear(ROIL)operatorsandrandomselectors.Third,weintroduceaTMP algorithmforsolvingthecompressiveRPCAproblemwhichaimstorecoveralow- rank matrix and a sparse matrix from their compressed mixture. We then apply the TMP algorithm to the video background subtraction problem and show that v vi Preface TMP achieves much better numerical and visual recovery performance than its counterparts.Withthisbook,wewishtospurnewresearchesonapplyingmessage passingtovariousinferenceproblems. Chengdu,China XiaojunYuan Shanghai,China ZhipengXue June2020 Acknowledgements Thisbookhasbecomearealitywiththekindsupportandhelpofmanyindividuals inthepastfewyears.Wewouldliketoextendoursincerethankstoallofthem. vii Contents 1 Introduction .................................................................. 1 1.1 Background.............................................................. 1 1.1.1 CompressedSensing............................................ 2 1.1.2 Low-RankMatrixRecovery.................................... 3 1.1.3 CompressedRobustPrincipalComponentAnalysis.......... 3 1.2 Contributions............................................................ 4 1.3 Organization............................................................. 4 References..................................................................... 5 2 TurboMessagePassingforCompressedSensing......................... 7 2.1 Preliminaries ............................................................ 7 2.1.1 CompressedSensing............................................ 7 2.1.2 TurboCompressedSensing .................................... 8 2.2 Denoising-BasedTurbo-CS ............................................ 11 2.2.1 ProblemStatement.............................................. 11 2.2.2 ExtrinsicMessagesforaGenericDenoiser ................... 12 2.2.3 Denoising-BasedTurbo-CS.................................... 15 2.3 ConstructionofExtrinsicDenoisers ................................... 16 2.3.1 ExtrinsicSURE-LETDenoiser ................................ 16 2.3.2 OtherExtrinsicDenoisers...................................... 18 2.4 EvolutionAnalysisofD-Turbo-CS .................................... 19 2.4.1 MSEEvolution.................................................. 19 2.4.2 SparseSignalwithi.i.d.Entries................................ 20 2.4.3 SignalwithCorrelatedEntries ................................. 21 2.5 PerformanceComparisons.............................................. 23 2.6 Summary ................................................................ 26 References..................................................................... 27 3 Turbo-TypeAlgorithmforAffineRankMinimization .................. 29 3.1 ProblemDescription.................................................... 29 3.2 TheTARMAlgorithm.................................................. 30 3.2.1 AlgorithmDescription.......................................... 30 ix x Contents 3.2.2 DeterminingtheParametersofTARM ........................ 32 3.3 Low-RankMatrixRecovery............................................ 34 3.3.1 Preliminaries.................................................... 34 3.3.2 ParameterDesign............................................... 35 3.3.3 StateEvolution.................................................. 37 3.3.4 NumericalResults .............................................. 39 3.4 MatrixCompletion...................................................... 43 3.4.1 Determiningμ ................................................. 43 t 3.4.2 Determiningα andc .......................................... 44 t t 3.4.3 NumericalResults .............................................. 45 3.5 MoreNumericalResults................................................ 48 3.5.1 Low-RankMatrixRecovery.................................... 48 3.5.2 MatrixCompletion ............................................. 52 3.6 Summary ................................................................ 52 References..................................................................... 64 4 Turbo Message Passing for Compressed Robust Principal ComponentAnalysis......................................................... 67 4.1 ProblemDescription.................................................... 67 4.2 Turbo-TypeMessagePassingAlgorithms ............................. 68 4.2.1 TMPFramework................................................ 68 4.2.2 ModuleA:LinearEstimation.................................. 69 4.2.3 ModuleB:SparseMatrixEstimation.......................... 72 4.2.4 ModuleC:Low-RankMatrixEstimation ..................... 74 4.2.5 OverallAlgorithm .............................................. 75 4.3 SparseMatrixDenoisersforModuleB................................ 77 4.3.1 Preliminaries.................................................... 77 4.3.2 Soft-ThresholdingDenoiser.................................... 77 4.3.3 SURE-LETDenoiser........................................... 78 4.3.4 OutputMSEofModuleB...................................... 79 4.4 Low-RankDenoisersforModuleC.................................... 80 4.4.1 Singular-ValueSoft-ThresholdingDenoiser................... 80 4.4.2 Singular-ValueHard-ThresholdingDenoiser.................. 81 4.4.3 BestRank-r Denoiser .......................................... 82 4.4.4 OutputMSEofModuleC...................................... 83 4.5 ConvergenceandComplexityofTMP................................. 83 4.5.1 RevisitingAssumptions4.1and4.2 ........................... 83 4.5.2 DampingTechnique ............................................ 85 4.5.3 ComplexityofTMP ............................................ 86 4.6 NumericalResults....................................................... 86 4.6.1 TMPwithDifferentDenoisersandMSEEstimations........ 87 4.6.2 ConvergenceComparisonofTMPwithExistingAlgorithms 88 4.6.3 PhaseTransition ................................................ 90 4.6.4 VideoBackgroundandForegroundSeparation ............... 91

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.