ebook img

Tunneling Hamiltonian description of the atomic-scale 0-pi transition in superconductor/ferromagnetic-insulator junctions PDF

0.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Tunneling Hamiltonian description of the atomic-scale 0-pi transition in superconductor/ferromagnetic-insulator junctions

1 1 0 2 π Tunneling Hamiltoniandescriptionoftheatomic-scale0- transition n a insuperconductor/ferromagnetic-insulatorjunctions J 0 S. Kawabataa,b, Y. Tanakac, A. A. Golubovd, A. S. Vasenkoe, S. Kashiwayaf Y. Asanog 2 aNanosystemResearch Institute(NRI), National Instituteof Advanced Industrial Scienceand Technology (AIST), Tsukuba, ] Ibaraki 305-8568, Japan ll bCREST, Japan Scienceand Technology Corporation (JST), Kawaguchi, Saitama 332-0012, Japan a cDepartment of Applied Physics, Nagoya University,Nagoya, 464-8603, Japan h dFaculty of Science and Technology, Universityof Twente, P.O.Box 217, 7500 AE Enschede, The Netherlands - eInstitut Laue-Langevin, 6rue Jules Horowitz, BP156, 38042, Grenoble, France s e fNanoelectronics Research Institute(NeRI), AIST, Tsukuba, Ibaraki 305-8568, Japan m gDepartment of Applied Physics, Hokkaido University,Sapporo, 060-8628, Japan . t a m Abstract - d WeshowaperturbationtheoryoftheJosephsontransportthroughferromagneticinsulators(FIs).Recentlywehave n found that the appearance of the atomic scale 0-π transition in such junctions based on numerical calculations. In o c order to explore the mechanism of this anomalous transition, we haveanalytically calculated theJosephson current [ using thetunnelingHamiltonian theory and found that thespin dependentπ-phaseshift in theFI barrier gives the atomic scale 0-π transition. 1 v 6 Keywords: Josephson junction, Spointronics, Ferromagnetic insulator,Quantum computer, TunnelingHamiltonian method 0 PACS: 74.50.+r,03.65.Yz, 05.30.-d 8 3 . 1 1. Introduction zanov et al. [5] and Kontos et al. [6] Until recently, 0 1 however,investigationsontheπ junctionhavebeen 1 In the usual Josephson junctions at equilibrium mainly focusedonthe S/FM/Ssystems. v: the phase difference of the superconducting order We havepredicteda possibility ofthe π-junction i parameter on the two superconductor is zero. On formation in Josephson junctions through ferro- X the other hand, in the Josephson junctions with magnetic insulators (FIs) by numerically solving ar ferromagnetic-metalinterlayer(S-MF-S junctions), the Bogoliubov-de Genne equation [7,8] and the the groundstate may correspondto the phase dif- Nambu Green’s function [9–12]. The formation of ference[1,2].TheJosephsonπ-junctionformationis the π junction using such an insulating barrier is relatedwiththedampingoscillatorybehaviorofthe very promising for future qubit application [13– Cooper pair wave function in a FM [3,4]. In terms 16] because of it’s low decoherence nature [17,18]. of the Josephson relationship I = I sinφ, where More importantly, we have shown that the ground J C φisthephasedifferencebetweenthetwosupercon- state of such junction alternates between 0- and π- ductor layers, a transition from the 0 to π states stateswhenthicknessofFIisincreasingbyasingle impliesachangeinsignofI frompositivetonega- atomic layer. In this paper in order to understand C tive.Experimentallytheexistenceoftheπ-junction the physical mechanism of this atomic scale 0-π in S/FM/S systems has been confirmed by Ryan- transition, we analytically calculate the Josephson Preprintsubmitted toElsevier 21January 2011 currentbasedonthetunnelingHamiltonianmethod In this paper we focused on the high-T d-wave C and show that the spin-dependent π-phase shift of junction witha FI barrier[Fig.1(b)].We note that the tunneling matrix element of the FI layer is the thequalitativelysameresultcanbeobtainedforthe originofthis anomaloustransition. caseofconventionals-wavejunctions. 2. Tunneling properties of a ferromagnetic 3. Theory insulator In this section, we analytically calculate the In this section, we briefly describe the electronic JosephsoncurrentofS/FI/Sjunctionsbasedonthe structure of a representative of FI materials, i.e., tunneling Hamiltonian approach. Let us consider La BaCuO (LBCO) [19]. The typical DOS of 2 5 a three-dimensional S/FI/S junction as shown in LBCOforeachspindirectionisshownschematically Fig. 1(b). The Hamiltonian of the system can be inFig.1(a).TheexchangesplittingV isestimated ex describedby to be 0.34 eV by a first-principle band calculation using the spin-polarized local density approxima- H =H +H +H +H , (3) 1 2 T Q tion [20]. Since the exchange splitting is large and the bands are originally half-filled, the system be- where H and H are Hamiltonians describing the 1 2 comes FI. Based on the band structure [Fig. 1(a)], d-wavesuperconductors: thespinσ(=↑,↓)dependenttransmissioncoefficient ~2∇2 Tσ forthe FI barriercanbe calculatedas[7] H = dr ψ† (r) − −µ ψ (r) 1 1σ 2m 1σ ρ t LF Xσ Z (cid:18) (cid:19) Tσ =αLF (cid:18) gσ (cid:19) , (1) − 12 dr dr′ψ1†σ(r)ψ1†σ′(r′) σ,σ′Z Z byusingthetransfermatrixmethod,whereρ = X ↑(↓) ×g (r−r′)ψ (r′)ψ (r), (4) −(+)1andα isaspin-independentcomplexcon- 1 1σ′ 1σ LF stant,tisthehoppingintegralintheFI,gisthegap where µ is the chemicalpotentialand ψ (ψ†) is the betweentheup-anddown-spinband,andLF isthe fermionfieldoperatorandg(r−r′)istheattractive layernumber ofthe FI.We immediately find interaction.ThetunnelingHamiltonianwithaspin- T↑ =(−1)LF, (2) dependent tunneling matrix element tσ of the FI barrieris givenby T ↓ sotherelativephaseofTσbetweenspinupanddown H = dr dr′ t (r,r′)ψ† (r)ψ (r′) isπ (0)forthe odd(even)numberofL .Nextsec- T σ 1σ 2σ F tion,wewillcalculatetheJosephsoncurrentthrough Xσ Z Z h + h.c.], (5) sucha FI analytically. and (Q −Q )2 1 2 H = (6) Q 8C is the chargingHamiltonian, where C is the capac- itance of the junction and Q is the operator for 1(2) the charge on the superconductor 1 (2), which can be writtenas Q =e drψ† (r)ψ (r). (7) 1(2) 1(2)σ 1(2)σ σ Z X Fig. 1. (Color online) (a) The density of states for By using the functional integralmethod [17]and each spin direction for a ferromagnetic insulator, e.g., taking into account the spin dependence of t ex- LBCO, and (b) schematic picture of c-axis stack high-Tc σ d-wavesuperconductor/LBCO/high-Tcd-wavesuperconduc- plicitly,thegroundpartitionfunctionforthesystem tor Josephson junction. canbe writtenasfollows 2 Z = Dψ¯ Dψ Dψ¯ Dψ exp −1 ~βdτL(τ) , β(τ)=−~2 t∗↓(k,k′)t↑(k,k′)F1(k,τ)F2† k′,−τ . 1 1 2 2 ~ Z " Z0 # kX,k′ (cid:0) (cid:1) (8) (15) where β = 1/k T, ψ(ψ¯) is the Grassmann field The NambuGreenfunctions isgivenby B which corresponds to the fermionic field operator ~∆ (k) [ψ(ψ†)]inEq.(2),andtheLagrangianLisgivenby F (k,ω )= i , (16) i n (~ωn)2+ξk2 +∆i(k)2 L(τ)= drψ¯iσ(r,τ)∂τψiσ(r,τ)+H(τ). whereξk =~2k2/2m−µisthesingleparticleenergy Xσ iX=1,2Z relativetotheFermisurfaceand~ωn =(2n+1)π/β (9) istheMatsubarafrequency(nisaninteger).Inthe case of the cuprate high-T superconductors with In orderto removethe ψ4 term in the Hamiltonian c the dx2−y2 symmetry [21], the order parameter is H(τ), we will use the Hubbard-Stratonovichtrans- givenby formationwhichintroducesacomplexpairpotential field ∆ (k)=∆ cos2θ. (17) i 0 ∆(r,r′;τ)=|∆(r,r′;τ)|exp[iφ(r,r′;τ)]. (10) Below we will calculate the Josephson critical cur- rent I analytically and discuss the possibility of C Theresultingactionisonlyquadraticinthe Grass- the atomicscale0-π transition. mannfield, sothat the functional integraloverthis number can readily be performed explicitly. The 4. Josephsoncritical current functionalintegraloverthe modulusofthepairpo- tential field is taken by the saddle-point method. The Josephson critical current I for a c-axis d- Then the partition function is reduced to a single C wave junction through the ferromagnetic insulator functional integral over the phase difference φ = [Fig.1(b)]canbe expressedas φ −φ . To second order in the tunneling matrix 1 2 element,onefinds 2e2 I = t∗(k,k′)t (k,k′)F(k,ω )F(k′,ω ) C ~β ↓ ↑ n n Z = Dφ(τ)exp −Seff[φ] , (11) kX,k′Xωn ~ (18) Z (cid:20) (cid:21) wherethe effectiveactionisgivenby by assuming ∆ = ∆ = ∆ cos2θ and thus F = 1 2 0 1 F = F. We also assume that the tunneling matrix Seff[φ]=Z0~βdτ"C2 (cid:18)2~e∂φ∂(ττ)(cid:19)2− 2~eICcosφ(τ)#. ehle2ermenetnttutnσn(kel,ikng′)in∝wThσicihs tghiveemnoinmteenrtmums okfkthpearcaol-- (12) leltothelayerisconserved[22,23]andhasthesame L dependenceonthetransmissioncoefficientT as F σ In the calculation we have ignored the irrelevant Eq.(1)[7],i.e., quasiparticletunneling termforsimplicity.Here 2e ~β t∗↓(k,k′)t↑(k,k′)=|t0|2(−1)LFδkkk′k, (19) IC =− ~ dτβ(τ) (13) we obtain an analytical expression of IC for T = 0 Z0 K as is the Josephson critical current, and then the ∆ G Josephsoncurrentis givenby IC =(−1)LF 0 N, (20) 2πe I (φ)=I sinφ, (14) where J C 4πe2 wherethenegative(positive)IC correspondstothe GN = ~ |t0|2N02, (21) π (0) junction. The Josephson kernel β(τ) is given intermsoftheoff-diagonalNambuGreen’sfunction isthenormalconductancewithN beingthedensity 0 fortwosuperconductorF (i=1,2), i.e., of states at E . The sign of I becomes negative i F C 3 forthe oddnumberofLF andpositiveforthe even [14] S. Kawabata, S. Kashiwaya, Y. Asano, Y. Tanaka, A. number of L as was numerically found in [7–12]. A.Golubov, Phys. Rev. B 74(2006) 180502(R). F Therefore, the spin dependent π-phase shift of the [15] S.Kawabata,A.A.Golubov,PhysicaE40(2007)386. [16] S. Kawabata, Y. Asano, Y. Tanaka, S. Kashiwaya, A. tunneling matrix element t in the FI barrier gives σ A.Golubov, Physica C468(2008) 701. riseto the atomicscale0-π transition. [17] G.Sch¨on, A.D.Zaikin,Phys.Reports 198(1990) 237. [18] T. Kato, A. A. Golubov, Y. Nakamura, Phys. Rev. B 76(2007) 172502. 5. Summary [19] F. Mizuno, H. Masuda, I. Hirabayashi, S. Tanaka, M. Hasegawa, U.Mizutani, Nature 345(1990) 788. To summarize, we have studied the Josephson [20] V.Eyert,K.H.H¨oc,P.S.Riseborough,Europhys.Lett. 31(1995) 385. effect in S/FI/S junction by use of the tunneling [21] S.KashiwayaandY.Tanaka,Rep.Prog.Phys.63(2000) Hamiltonian method. We have analytically calcu- 1641. lated the Josephson current and showed the possi- [22] S.Kawabata,S.Kashiwaya,Y.Asano,Y.Tanaka,Phys. bility ofthe formationofthe atomicscale0-π tran- Rev. B 70(2004) 132505. sition in such systems. This observation is consis- [23] T.Yokoyama,S.Kawabata, T.Kato,Y.Tanaka, Phys. Rev. B 76(2007) 134501. tentwithpreviousnumericallyresults.Wehopthat suchFIbasedπ-junctionsbecomeanelementinthe architectureofquantuminformationdevices. Acknowledgements This workwas supported by CREST-JST,and a Grant-in-Aid for Scientific Research from the Min- istry of Education, Science, Sports and Culture of Japan(GrantNo.22710096). References [1] A. A. Golubov, M. Y. Kupriyanov, E. Il’ichev, Rev. Mod.Phys. 76(2004) 411. [2] A.I. Buzdin, Rev. Mod. Phys.77 (2005) 935. [3] L. N. Bulaevskii, V. V. Kuzii, A. A. Sobyanin, JETP Lett. 25(1977) 291. [4] A. I. Buzdin, L. N. Bulaevskii, S. V. Panyukov, JETP Lett. 35(1982) 179. [5] V.V.Ryazanov,V.A.Oboznov, A.Y.Rusanov,A.V. Veretennikov,A.A.Golubov,J.Aarts,Phys.Rev.Lett. 86(2001) 2427. [6] T. Kontos, M. Aprili, J. Lesueur, F. Genˆet, B. Stephanidis, R. Boursier, Phys. Rev. Lett. 89 (2002)137007. [7] S. Kawabata, Y. Asano, Y. Tanaka, A. A. Golubov, S. Kashiwaya, Phys. Rev. Lett. 104(2010) 117002. [8] S.Kawabata,Y.Tanaka,Y.Asano,PhysicaE43(2011) 722. [9] S.Kawabata,Y.Asano,Int.J.Mod.Phys.B23(2009) 4329. [10] S. Kawabata, Y. Asano, Y. Tanaka, S. Kashiwaya, PhysicaC 469(2009) 1621. [11] S. Kawabata, Y. Asano, Y. Tanaka, S. Kashiwaya, PhysicaE 42(2010) 1010. [12] S. Kawabata, Y. Asano, Low Temp. Phys. 36 (2010) 1143. [13] S. Kawabata, S. Kashiwaya, Y. Asano, Y. Tanaka, PhysicaC 437-438(2006) 136. 4

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.